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Abstract: To solve the problem of smooth switching between the car-following model and lane-
changing model, the Intelligent Driver Model (IDM) for a single lane was used to study the driver’s
behavior switching mechanism of normally following, generating intentions to change lanes, creating
space and speed gains, and performing lane change. In the case of sufficient lane-changing space
and speed gains, the ego vehicle’s intention to change lanes was considered to solve the switching
boundary between car-following behavior and lane-changing behavior, which is also the IDM failure
point. In the event that there are no lane-changing gains, the IDM was optimized by incorporating
the constraint components of the target lane vehicles in conjunction with the actual motion state
of the ego vehicle, and the Stepless Switching Intelligent Driver Model (SSIDM) was constructed.
Drivers’ natural driving information was collected, and scenario mining was performed on structured
roads. On the basis of the collected data, an elliptic equation was used to fit the behavior switching
boundary, and the two component balance coefficients of the front and rear vehicles on the target
lane were identified. According to the test set verification results, the Mean Square Error (MSE) of
the SSIDM is 2.172, which is 57.98% less than that of the conventional single-lane IDM. The SSIDM
can accomplish stepless switching comparable to the driver’s behavior between the car-following
behavior and the lane-changing behavior, with greater precision than IDM. This research can provide
theoretical support for the construction of the point-to-point driving model and the development
of L2+ autonomous driving functions. It can provide assistance for the landing and application of
full-behavior and full-scene autonomous driving.

Keywords: driver model; behavior switching mechanism; parameter identification; stepless switching

1. Introduction

In recent years, with the rapid development of Internet of Vehicles (IoV) technology,
various full-scene intelligent driving schemes supporting the integration of driving and
parking, such as Navigate on Pilot (NOP) and Navigate on Autopilot (NOA), have begun
to be deployed in mass-produced vehicles [1]. Car-following behavior and lane-changing
behavior are the two most fundamental driving behaviors for point-to-point driving [2]. In
conjunction with the motion state of ego vehicle and surrounding interactive vehicles, it is
necessary to frequently switch between the two categories of behavior. By studying the
behavior switching mechanism from the driver’s perspective, solving the switching bound-
ary, and considering the vehicle constraints of the target lane for equivalent modeling, it is
possible to achieve stepless switching between car-following behavior and lane-changing
behavior, which has important theoretical significance and practical value for building
point-to-point full scene intelligent driving.

The majority of car-following models are based on theory and are rule-driven. IDM is
the most popular and most accurate prediction method [3,4]. In 2000, Treiber M et al. [5]
investigated the car-following behavior and proposed the IDM based on the influence
of following distance and anticipated speed. Since then, specialists and academics have
analyzed and optimized IDM from a variety of perspectives. Péter T et al. [6] conducted
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a detailed study on the mathematical description of the universal IDM, which takes into
account the dynamic variations in the state characteristics of traffic processes. Qin P
et al. [7] optimized the applicable boundary of IDM based on road geometric conditions
such as camber, superelevation, and slope. Yi Z et al. [8] developed the Intelligent Back-
looking Distance Driver Model (IBDM) with the influence of rear vehicles in the same lane.
The Autonomous Vehicle-Intelligent Driver Model (AV-IDM) was created by Sharath M.
and his team while taking into account circumferential environmental vehicles [9]. Li Y
et al. [10] established a Long Short Term Memory-Intelligent Driver Model (LSTM-IDM)
governed by data rules capable of simulating extreme vehicle conditions such as static or
extreme acceleration. Yang L. et al. [11] added a cognitive risk coefficient to IDM based
on driver behavior in ice and snow conditions and validated the model’s efficacy and
robustness. Jin P. et al. [12] delved into the impact of data error accumulation on IDM
precision and developed an error calibration function to reduce cumulative error. A hybrid
flow simulation model, which merges IDM and Cooperative Adaptive Cruise Control
(CACC), was developed by Chang X et al. [13] in their study. The model’s effectiveness was
verified by its simulation of heterogeneous traffic flow. Hu X et al. [14] established PS-IDM
on the basis of IDM considering the change in the driver’s psychological state caused by
the invasion of other vehicles and demonstrated that PS-IDM can improve car-following
performance effectively. Péter T et al. [15] applied the reduced network traffic model to
the IDM and verified the optimization on the open road. Bouadi M et al. [16] studied the
influences of stochastic factors on the car-following model, and Stochastic Intelligent Driver
Model (SIDM) was established considering both the inter-vehicular gap and the velocity
difference. In addition to the optimization of the IDM model, Wang Z et al. [17] proposed
an algebraic framework that does not involve parameter optimization identification for
evaluating and comparing car-following models with linearly identifiable parameters.
A data-driven car-following model was established by Qu D et al. [18], based on CNN-
BiLSTM-Attention for CAV, which has high accuracy in vehicle-trajectory prediction.

The lane-changing intention is caused by the driver’s dissatisfaction with the cur-
rent driving state causes, which compels the driver to generate space and speed gains
prior to changing lanes through acceleration and deceleration in a specific time domain.
Yuan W et al. [19] defined eye movement parameters such as fixation time and saccade
amplitude to effectively recognize a driver’s lane-changing intention from the perspective
of the driver’s physiological characteristics. From the standpoint of the vehicle’s motion
state, there are currently two methodologies for lane-changing intention recognition of
rule-driven and data-driven [20]. In terms of rule-driven, Zhu N. et al. [21] constructed
dynamic and static risk fields based on the theory of artificial potential fields and char-
acterized the lane-changing risk by defining driver lane-changing planning and safety
threshold. Chen H. et al. [22] developed a dissatisfaction accumulation model based on the
driver’s anticipated speed in order to evaluate lane-changing decisions. Wang J. et al. [23]
introduced two quantitative indicators of lane-changing intensity and risk factors to devise
and identify safe lane-changing conditions. Using the relative motion state of the ego
vehicle and the surrounding vehicles, Ji X et al. [24] established a data-driven LSTM model
for recognizing the driver’s lane-changing intention. Guo Y. et al. [25] developed a model
for the recognition of lane-changing intentions based on the LSTM model of the attention
mechanism. Zhao J. et al. [26] proposed a recognition model of lane-changing intention
that utilized a combination of the convolutional neural network, gated recurrent neural
network, and transformer model.

There were also many behavioral analysis studies directly related to driver style. In
terms of car-following behavior, Makridis M. et al. [27] proposed a new modeling method
of car-following behavior, in which the characteristics of the driver and vehicle were taken
as input. The Microsimulation Free-flow aCceleration (MFC) model was used to clearly
reproduce the influence of vehicle dynamics and driver behavior. Adavikottu A. et al. [28]
studied the driving behavior of aggressive drivers, which tends to be closer car-following
distance, smaller TTC, rapid acceleration, and rapid deceleration. The results can be used
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to guide the construction of the car-following model for differentiated drivers. In terms
of lane-changing behavior, Antin J. et al. [29] investigated the real lane-changing behavior
combined with natural driving data, and it was found that elderly drivers may not be
able to perform shoulder saccades before lane-changing behavior, resulting in a greater
error rate. Li X. et al. [30] found that it was helpful to understand the driver’s interaction
tendency to study the different attitudes of different drivers to FAVS lane-changing behavior
according to their age, gender, and driving experience. These kinds of research have studied the
real car-following behavior and lane-changing behavior of drivers with different styles but have
not considered the switching mechanism of car-following behavior and lane-changing behavior.

Presently, the majority of car-following models and lane-changing intention recogni-
tion models are independent of each other. The switching between car-following behavior
and lane-changing behavior is a stepped switching across models, which results in poor
smoothness and stability of switching during simulations or real-vehicle verifications. This
paper combined the entire process of behavior switching from the normal following, the
generation of lane-changing intention, the creation of lane-changing space and speed gains,
and the execution of lane change. Taking the scenario of changing lanes after following a
large vehicle for a distance as an example, the IDM was calibrated using natural driving
data, and the switching boundary was determined. The target lane vehicle constraint
components were added to construct SSIDM based on the switching boundary, and the
balance coefficients of SSIDM were determined by actual data. On the basis of the test set,
the model’s predictive accuracy was validated. The results demonstrate that the model can
realize the car-following behavior to lane-changing behavior stepless switching equivalent
to the driver’s coherent driving behavior, and that the model’s accuracy is high, which is
crucial for the realization of point-to-point full scene intelligent driving simulation.

2. Behavior Switching Scenario Mining
2.1. Natural Driving Data Collection

A data acquisition system was designed to collect information about the driver’s
natural driving behavior on open roads. As the test vehicle, an electric vehicle was equipped
with functional cameras, millimeter-wave radars, lidars, GNSS and HD cameras. The
information on the circumferential targets was obtained by the target-level data fusion of
the functional cameras and the radars. The positioning, heading angle, road curvature,
and other information of the test vehicle were collected by GNSS. The high-performance
industrial computer was connected to various sensors to obtain text and video data in
real-time. Concurrently, Network Attached Storage (NAS) equipment was deployed on the
vehicle and office terminals to accomplish large-capacity storage, which communicated
with industrial computers via high-speed network interfaces. The entire system is shown
in Figure 1.

A total of 20 experienced drivers were recruited to execute driving tasks, and the
information about the drivers’ age, gender, annual driving mileage, and occupation are
shown in Figure 2. The majority of the collection was structured roads, including highways
and urban expressways.
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2.2. Behavior Scenario Mining

After cleaning multi-source heterogeneous original data, car-following behavior to
lane-changing behavior scenario mining was performed. Initially, the switching behavior
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was defined, which included the car-following starting segment, the normal following
segment, the cross-line segment, and the lane-changing completion segment. Among them,
the starting segment of the car-following behavior was defined as the constraints between
the ego vehicle and the front vehicle in the ego lane. For clear expression constraints,
Figure 3 is shown as follows.
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Figure 3 includes the distance constraint between the ego vehicle and the lane line,
the speed constraint of the ego vehicle, the distance constraint between the front vehicle
and the lane line, the distance constraint between the front vehicle and the ego vehicle, and
the speed constraint of the front vehicle. The origin of the coordinates was defined as the
center of the ego vehicle rear axle. The specific constraints are as follows.

Dn
2 < Ll < W − Dn

2 ∪
Dn
2 < Lr < W − Dn

2
vn > 0
Lr − |∆yi| − Di

2 > 0∪ Ll − |∆yi| − Di
2 > 0(i = 1, 2 . . . n)

∆xn−1 = min∆xi(i = 1, 2 . . . n)
∆xmin ≤ ∆xn−1 ≤ ∆xmax
vn−1 > 0

(1)

where Dn is the width of the ego vehicle, W is lane width, Ll and Lr are the distance from
the coordinate origin to the left and right lane lines, vn is the ego vehicle speed, Di is the
width of each vehicle identified in the ego lane, ∆xi and ∆yi are the relative longitudinal
and lateral distances between each vehicle identified in the ego lane and the ego vehicle,
∆xn−1 is the relative longitudinal distance of the following target, ∆xmax and ∆xmin are the
relative longitudinal distance thresholds between the ego vehicle and the following target,
vn−1 is the following target speed.

The normal following segment was defined as the distance without mutation between
the ego vehicle and the following target on the basis of satisfying the above conditions. All
types of cut out and cut in scenarios were filtered out. The limitation is as follows:

|∆xn−1(t)− ∆xn−1(t− 1)|< ∆xs (2)

where ∆xs is the distance mutation threshold.
The cross-line segment was based on the lane line with the maximum level of confi-

dence, which was defined as beginning to shift to the lane line on the lane-changing side
until the distance changed abruptly. The distance from the lane line is shown in Figure 4a.
As shown in Figure 4b, the starting point of lane change was determined by the speed of the
offset lane line, with the zero point of the offset speed change serving as the starting point.
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Taking the steering wheel angle threshold and the distance threshold between the ego
vehicle and the lane line as constraints, the constraints are as follows:{

|Ll(t)− Ll(t− 1)|> Lmin
|δ(t)|> δmin

(3)

where δ is the steering wheel angle, Lmin and δmin are the lane line distance mutation
threshold and the steering wheel angle threshold, respectively.

The lane-changing completion segment was defined by the vehicle’s stable driving
in the target lane after crossing the line, and the comprehensive judgment was based on
the yaw angle and steering wheel angle of the ego vehicle. When following large vehicles,
drivers have a greater incentive to change lanes due to the safety principle. To eliminate
the effect of the front vehicle type on the intention to change lanes, the variable was unified
and the target type in front was restricted to large vehicles. Considering that the left lane is
generally a fast lane, the left lane-changing scenario was finally selected. Figure 5 depicts
the mined scenario.
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3. IDM Parameter Identification
3.1. IDM Modeling Mechanism

On the basis of the generalized force model, IDM for single lane car-following behavior
was proposed. The research focused on alterations in traffic flow. It is capable of simulating
the transition from free flow to congested flow, accounting for the acceleration trend in the
free state of the vehicle and averting the deceleration trend of the front vehicle collision. It
belongs to the expected measurement model and the specific expression is as follows:

dvn(t)
dt = a[1− ( vn(t)

ṽ )
σ
− ( S∗(vn(t),∆vn−1(t))

∆xn−1(t)
)

2
]

S∗(vn(t), ∆vn−1(t)) = s̃ + τvn(t) +
vn(t)∆vn−1(t)

2
√

ab

(4)

where ṽ is the driver’s expected speed, σ is the acceleration index, a is the maximum
acceleration of the ego vehicle, b is the comfortable acceleration of the ego vehicle, s̃ is
the blocking interval, τ is the expected headway, ∆vn−1(t) is the relative speed of the ego
vehicle and the front vehicle.

IDM can simulate the acceleration trend in a free flow. At this time, ∆x(t) approaches
infinity, and the IDM can be rewritten as follows:

dvn(t)
dt

= a[1− (
vn(t)

ṽ
)

σ

] (5)

In a congested flow state, the model can also be used to simulate the braking trend of
the ego vehicle. At this time, the IDM can be simplified as follows.

dvn(t)
dt

= −a[(
S∗(vn(t), ∆vn(t))

∆x(t)
)

2

] (6)

3.2. Model Parameter Identification

Based on the Genetic Algorithm (GA) and actual data, IDM identification parameters
were calibrated. GA is a random global search optimization method which starts from
any initial population. Through selection, crossover and mutation operations, a group of
individuals are generated which are more suitable for the environment, so that the group
evolves to a better and better area in the search space. In this way, the generation continues
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to reproduce and evolve, and eventually converges to a group of individuals most suitable
for the environment, resulting in a high-quality solution to the problem. GA has good
versatility, a wide range of application scenarios, and minimal application restrictions. It
has been proven to achieve an excellent optimization effect. At the same time, GA originates
from the solution set and has a larger coverage, which is more conducive to the global
preferred orientation. As the objective function, the Root Mean Square Percentage Errors
(RMSPE) were introduced. The predicted values and actual values of relative speed and
relative distance were compared. The objective function is described as follows.

SRMSPE =

√√√√ 1
n

n

∑
t=1

(∆xn−1(t)− ∆̃xn−1(t))
2

(∆xn−1(t))
2 +

√√√√ 1
n

n

∑
t=1

(vn(t)− ṽn(t))
2

(vn(t))
2 (7)

where n is the total number of samples, ∆̃xn−1 is the predicted relative distance between
the two vehicles and ṽn is the predicted ego vehicle speed.

The initial population was set to 100, and its population of individuals was determined
by a roulette wheel. The crossover operator was defined as a uniform crossover, and the
crossover probability was 0.8. The mutation operator was defined as a uniform mutation,
and the mutation probability was 0.1. The training set and test set were divided by 7:3
based on the typical car-following segment data. The parameter identification results are
shown in Table 1.

Table 1. IDM identification results.

Parameter ṽ/(m·s−1) σ a/(m·s−2) b/(m·s−2) s̃/m τ/s

Value 35.022 0.018 0.218 1.503 13.262 2.606

The identification results were verified based on the test set, and MSE was used to
evaluate the speed prediction results of the ego vehicle. The comparison between the actual
speed of the ego vehicle and the speed predicted by IDM is shown in Figure 6.

World Electr. Veh. J. 2023, 14, x  9 of 19 
 

 
Figure 6. IDM identification comparison results. 

The calculated MSE value for the test set was 0.749, representing an accurate identi-
fication result. For the behavior of following large vehicles, these identification results can 
be used to predict the motion state of the ego vehicle. 

4. Construction of SSIDM 
4.1. Modeling Mechanism of SSIDM 

IDM is proposed for car-following behavior in a single lane. In a broad sense, it is ex-
pressed that the vehicle will accelerate when it is far away from the front vehicle and decel-
erate when it is close to the front vehicle. However, in the actual car-following process, due 
to the dissatisfaction with the relative distance or speed of the front vehicle, the driver of the 
ego vehicle will produce the intention of changing lanes, and the decision is made through 
lane selection and whether to change lane. If the target lane has enough space and speed 
gains, the driver of the ego vehicle will immediately change lanes, and the relative motion 
state between the ego vehicle and the front vehicle is defined as the switching boundary. If 
the target lane has front and rear vehicle constraints, the driver of the ego vehicle will change 
the motion state to create space and speed gains. This behavior still belongs to the car-fol-
lowing model, but the influence of the target lane vehicles needs to be considered on the 
basis of the single lane IDM. The relative distances between the vehicle and the front and 
rear vehicles of the target lane were defined as −Δ 1mx  and +Δ 1mx , and the relative speeds 

between the vehicle and the front and rear vehicles of the target lane were defined as −Δ 1mv  

and +Δ 1mv . The SSIDM modeling mechanism for car-following behavior to lane-changing 
behavior switching is shown in Figure 7. 

Figure 6. IDM identification comparison results.

The calculated MSE value for the test set was 0.749, representing an accurate identifi-
cation result. For the behavior of following large vehicles, these identification results can
be used to predict the motion state of the ego vehicle.
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4. Construction of SSIDM
4.1. Modeling Mechanism of SSIDM

IDM is proposed for car-following behavior in a single lane. In a broad sense, it is
expressed that the vehicle will accelerate when it is far away from the front vehicle and
decelerate when it is close to the front vehicle. However, in the actual car-following process,
due to the dissatisfaction with the relative distance or speed of the front vehicle, the driver
of the ego vehicle will produce the intention of changing lanes, and the decision is made
through lane selection and whether to change lane. If the target lane has enough space and
speed gains, the driver of the ego vehicle will immediately change lanes, and the relative
motion state between the ego vehicle and the front vehicle is defined as the switching
boundary. If the target lane has front and rear vehicle constraints, the driver of the ego
vehicle will change the motion state to create space and speed gains. This behavior still
belongs to the car-following model, but the influence of the target lane vehicles needs to be
considered on the basis of the single lane IDM. The relative distances between the vehicle
and the front and rear vehicles of the target lane were defined as ∆xm−1 and ∆xm+1, and
the relative speeds between the vehicle and the front and rear vehicles of the target lane
were defined as ∆vm−1 and ∆vm+1. The SSIDM modeling mechanism for car-following
behavior to lane-changing behavior switching is shown in Figure 7.
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Figure 7. Modeling mechanism.

Based on whether the target lane has constrained vehicles, all segments were divided
into four categories: only affected by the front vehicle of the ego lane, affected by the front
vehicle of the ego lane and the front vehicle of the target lane, affected by the front vehicle
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of the ego lane and the rear vehicle of the target lane, affected by the front vehicle of the
ego lane and the front and rear vehicles of the target lane. In order to characterize the
differences in behavior switching boundary, four types of scenarios were analyzed, and the
independence between variables was considered. Finally, the speed of the ego vehicle, the
relative distance from the front vehicle, and the speed of the front vehicle were taken as the
characteristic parameters to obtain the statistics of the key parameters of the lane-changing
starting point for each type of scenario. The statistical results are shown in Table 2.

Table 2. Statistical results.

Statistic Mean Value Standard Deviation

First type
vn/(m·s−1) 28.108 5.491
∆xn−1/m 95.569 48.412

vn−1/(m·s−1) 21.602 3.915

Second type
vn/(m·s−1) 27.788 4.879
∆xn−1/m 71.472 38.233

vn−1/(m·s−1) 20.998 3.697

Third type
vn/(m·s−1) 30.424 4.426
∆xn−1/m 91.829 47.457

vn−1/(m·s−1) 21.209 3.581

Fourth type
vn/(m·s−1) 27.811 5.393
∆xn−1/m 72.232 41.618

vn−1/(m·s−1) 21.178 3.763

To analyze the characteristics of the parameters, the kernel density estimation of these
three types of parameters was carried out. The kernel density curves corresponding to the
speed of the ego vehicle, the relative distance from the front vehicle, and the speed of the
front vehicle are shown in Figure 8.

Through the analysis of the statistical table and the kernel density estimation curves,
it can be concluded that for the second and fourth types of scenarios, the relative distance
between the ego vehicle and the followed front vehicle is the closest as shown in Figure 8a.
Due to the influence of the front vehicle in the target line, it is necessary to leave enough
space when performing lane change. For the third type of scenario, the ego vehicle speed is
the largest as shown in Figure 8b. Since there is a rear vehicle in the target lane in the third
type of scenario, the ego vehicle needs to accelerate to exceed the vehicle in the target lane
to create lane-changing space. The speeds of the followed vehicles in the four scenarios are
basically consistent and concentrated as shown in Figure 8c. The ego vehicle speed was
defined as the input independent variable, and it can be judged that the ego vehicle speed
at the initial point of lane change is mainly affected by the relative distance from the front
vehicle in these four scenarios. The relationship between the ego vehicle speed and the
relative distance of the front vehicle in four scenarios is shown in Figure 9.

According to the distribution of Figure 9, it can be seen that in the four types of
scenarios, the ego vehicle speed is positively correlated with the relative distance between
the two vehicles, and the slope gradually increases, which is in compliance with the
principle of car-following safety. At the same time, when the speed of the ego vehicle
exceeds 30 m·s−1, the car-following distance exceeds 150 m, which is separated from the car-
following relationship and is also consistent with the actual high-speed driving situation.
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4.2. Solution of Switching Boundary Conditions

Considering that the drivers’ response time is short, if the target lane has no front and
rear vehicle constraints, the lane change will be carried out immediately when the tolerance
boundary is reached. Therefore, the initial point of lane change in the first type of scenario
can be directly defined as the drivers’ tolerance boundary. The scatter distribution of the
relative distance between the ego vehicle and the target vehicle in the first type of scenario
is shown in Figure 10.
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It can be seen from Figure 8 that the shape of the scatter distribution is approximately
to the convex function, so various commonly convex functions were used for fitting. Based
on GA, the fitting parameters were optimized and evaluated by goodness of fitting. The
identification evaluation results are shown in Table 3.

By analyzing Table 3, the elliptic curve has the highest goodness of fitting, so the
elliptic equation was finally selected to characterize the tolerance boundary conditions. The
fitting results are shown in Figure 11.
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Table 3. Fitting evaluation results.

Fitting Function Value R2

∆xn−1 = k(vn)
a + b

k 6.2 × 10−3

0.473a 2.723
b 26.281

∆xn−1 = kavn + b
k 6.841

0.401a 1.089
b 1.837

∆xn−1 = d−√
c2[(1− (vn−a)2

b2 )]

a 0.315

0.572
b 34.879
c 180.245
d 197.179

∆xn−1 =
n
∑

i=0
aivn

i

n 2

0.431
a0 37.309
a1 −3.589
a2 0.198
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This switching boundary can constrain the car-following behavior of large vehicles
in front of the ego vehicle. When there are no interacting vehicles in the target lane, the
relative distance from the front vehicle of ego lane reaches this switching boundary, the ego
vehicle changes lanes, and the IDM fails.

4.3. Model Unified Expression

In the second, third, and fourth types of scenarios, if the switching boundary is reached
but there is no lane-changing space or speed gains, the driver will change the motion state
of the ego vehicle to generate lane change gains. Referring to the statistical distribution and
kernel density estimation of the characteristic parameters of the four types of scenarios, a
deceleration component was defined for the front vehicle of the target lane to ensure that
the vehicle has sufficient lane change gains. 4a−m−1 = (

S∗m−1(vn(t),∆vm−1(t))
∆xm−1(t)

)
2

S∗m−1(vn(t), ∆vm−1(t)) = s̃ + τvn(t) +
vn(t)∆vm−1(t)

2
√

ab

(8)

For the rear vehicle of the target lane, an acceleration component was defined to ensure
that the vehicle has enough lane-changing space. 4a+m+1 = (

S∗m+1(vn(t),∆vm+1(t))
∆xm+1(t)

)
2

S∗m+1(vn(t), ∆vm+1(t)) = s̃ + τvn(t) +
vn(t)∆vm+1(t)

2
√

ab

(9)
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On the basis of IDM, the front and rear vehicle constraint components of the target
lane were added. Considering the influence degree of the target lane vehicles on the ego
vehicle, the dimensionless balance coefficients were added before the two components, and
the vehicle acceleration can be obtained as follows:

dvn(t)
dt

= a[1− (
vn(t)

ṽ
)

σ

− (
S∗(vn(t), ∆vn(t))

∆xn−1(t)
)

2

−ωm−14 a−m−1 + ωm+14 a+m+1] (10)

where ωm−1 and ωm+1 are the balance coefficients of the front and rear vehicle components
of the target lane, respectively.

When there is a certain lane-changing space and speed gains, the driver of the ego
vehicle begins to change the lane. It is defined that there is enough lane-changing space
when the front and rear vehicles of the target lane meet the safety distance and the distance
between the front vehicle of the target lane and the ego vehicle is greater than the distance
between the front vehicle of the ego line and the ego vehicle, and there are enough speed
gains when the speed of the front vehicle of the target lane is greater than the speed of the
front vehicle of the ego lane. This termination condition is used as the initial point of lane
change in the second, third and fourth types of scenarios:

∣∣∣∆xm+1(t)
∣∣∣> ∆xsa f e ∩ ∆xm−1(t) > ∆xsa f e

∆xm−1(t) ≥ ∆xn−1(t)
∆vm−1(t) > ∆vn−1(t)

(11)

where ∆xsa f e is the safety distance threshold between the interactive vehicles in the target
lane and the ego vehicle.

Finally, the complete SSIDM expression considering the front and rear vehicle con-
straints of the target lane can be obtained.

(1) When the target lane has no front and rear vehicle constraints.

∆xn−1(t) ≥ d−
√

c2[(1− (vn(t)−a)2

b2 )] : (12a)

dvn(t)
dt = a[1− ( vn(t)

ṽ )
σ
− ( S∗(vn(t),∆vn(t))

∆xn−1(t)
)

2
]

∆xn−1(t) < d−
√

c2[(1− (vn(t)−a)2

b2 )] : (12b)

lane change

(2) When the target lane has front or rear vehicle constraints.



∆xn−1(t) ≥ d−
√

c2[(1− (vn(t)−a)2

b2 )] : (13a)

dvn(t)
dt = a[1− ( vn(t)

ṽ )
σ
− ( S∗(vn(t),∆vn(t))

∆xn−1(t)
)

2
]

∆xn−1(t) < d−
√

c2[(1− (vn(t)−a)2

b2 )] : (13b)

dvn(t)
dt = a[1− ( vn(t)

ṽ )
σ
− ( S∗(vn(t),∆vn(t))

∆xn−1(t)
)

2
−ωm−14 a−m−1 + ωm+14 a+m+1]∣∣∣∆xm+1(t)

∣∣∣> ∆xsa f e ∩ ∆xm−1(t) > ∆xsa f e ∩ ∆xm−1(t) > ∆xn−1(t) ∩ ∆vm−1(t) > ∆vn−1(t) : (13c)
lane change

When there are no front and rear vehicle constraints in the target lane, the normal
car-following behavior before reaching the tolerance boundary is denoted by Formula (12a),
and the lane-changing behavior after reaching the tolerance boundary is denoted by
Formula (12b). When the target lane is restricted by vehicles ahead or behind, the normal
car-following behavior before reaching the tolerance boundary is denoted by Formula (13a),
the creation of lane-changing space and speed gains after reaching the tolerance bound-
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ary is denoted by Formula (13b), and the lane-changing behavior after creating sufficient
lane-changing space and speed gains is denoted by Formula (13c).

5. Model Validation
5.1. SSIDM Identification

Combining the switching boundary fitted by the first type of scenario, the switching
boundary conditions in the second, third, and fourth types of scenarios were taken as the
starting point, and the corresponding fragments were intercepted at the starting point
of lane change. According to the 7:3 ratio, the intercepted fragments were assigned to
the training set and the test set. In SSIDM, the two component balance coefficients were
identified and calibrated using the GA method and training set. The final identification
results are shown in Table 4.

Table 4. Balance coefficient identification results.

Model Mean Value Standard Deviation

SSIDM
ωm−1 0.472 0.256
ωm+1 0.186 0.149

5.2. Comparison of Results

For the second type of scenario, the test set was input into IDM and SSIDM, respec-
tively. The comparison between the prediction results of the two types of models and
the actual speed is shown in Figure 12. Due to the influence of drivers’ driving styles,
extremely conservative or aggressive driving styles may lead to differences in prediction
results, so MSE is used to compare the accuracy of the two models. Using MSE as the error
comparison index, the MSE values of the IDM and SSIDM are 3.113 and 2.962.
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For the third type of scenario, the test set was input into IDM and SSIDM, respectively,
and the comparison between the prediction results and the actual speed is shown in
Figure 13. The MSE values of the IDM and SSIDM are 10.647 and 3.383.

For the fourth type of scenario, the test set was input into IDM and SSIDM, respectively,
and the speed prediction results of the ego vehicle were compared with the actual speed,
as shown in Figure 14. The MSE values of the IDM and SSIDM are 2.582 and 1.238.
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The comparison error of IDM and SSIDM on the ego vehicle speed prediction for the
second, third and fourth types of scenarios are shown in Table 5.

Table 5. Error comparison results.

Model Second Type Third Type Fourth Type Mean Value

IDM 3.113 10.647 2.582 5.169
SSIDM 2.962 3.383 1.238 2.172

By adding the constraint components of the front and rear vehicles of the target lane,
SSIDM can effectively simulate the acceleration and deceleration of the ego vehicle after
reaching the tolerance boundary, according to the analysis of Table 5. Especially in type
3 which is a scenario where there is a rearward vehicle in the target lane. In real driving
behavior, in order to obtain sufficient lane-changing space, most drivers will choose to
accelerate in the face of the target lane with a rear vehicle. However, for the IDM, its
generalized expression is to slow down when approaching the front vehicle and accelerate
when moving away from the front vehicle. Therefore, the error value of IDM is the largest
for the scenarios of type 3. SSIDM is more accurate compared to the IDM because it takes
into account the influence of the rear vehicle in the target lane. The vehicle speed prediction
accuracy of SSIDM is greater than that of the traditional single-line IDM, and the mean
value of MSE is 57.98% less than that of the IDM.

6. Conclusions

(1) The main goal of this study is to construct a stepless switching model between
car-following behavior and lane-changing behavior on basis of the IDM.
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(2) This research can provide theoretical support for the construction of the point-to-
point driving model and the development of L2+ autonomous driving functions.

(3) The mechanism of switching between the car-following behavior and lane-changing
behavior was analyzed. Based on whether there were constrained vehicles in the target
lane or not, all segments were divided into four categories. Combined with the first type of
scenario, the tolerance boundary was fitted based on the elliptic equation, and the goodness
of fitting is 0.572. Based on this boundary, the target lane vehicle constraint components
were added to construct SSIDM. The model consistently expresses the coherent driving
behavior that can encompass normal following, generate lane-changing intention, and
create lane-changing space and speed gains. The two component balance coefficients of
SSIDM were identified and calibrated based on the GA method, and the prediction results
of IDM and SSIDM were verified by the real vehicle data set.

(4) The prediction results of IDM and SSIDM for the second, third and fourth scenarios
were validated through a comparison with the actual collected data. The average MSE
for SSIDM is 2.172, which is 57.98% less than IDM. Therefore, the SSIDM considering the
tolerance boundary and adding the vehicle constraints of the target lane can simulate the
acceleration and deceleration to create lane-changing space and speed gains to equivalent
driver behavior. SSIDM can also achieve the car-following behavior to lane-changing
behavior stepless switching, with higher accuracy than that of IDM for a single lane.
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