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Abstract: To enhance the safety and stability of lane change maneuvers for autonomous vehicles
in adverse weather conditions, this paper proposes a quadratic programming−based trajectory
planning algorithm for lane changing in rainy weather. Initially, in order to mitigate the risk of
potential collisions on wet and slippery road surfaces, we incorporate the concept of road adhesion
coefficients and delayed reaction time to refine the establishment of the minimum safety distance. This
augmentation establishes constraints on lane change safety distances and delineates the boundaries of
viable lane change domains within inclement weather contexts. Subsequently, adopting a hierarchical
trajectory planning framework, we incorporate visibility cost functions and safety distance constraints
during dynamic programming sampling to ensure the safety of vehicle operation. Furthermore,
the vehicle lane change sideslip phenomenon is considered, and the optimal lane change trajectory
is obtained based on the quadratic programming algorithm by introducing the maneuverability
objective function. In conclusion, to verify the effectiveness of the algorithm, lateral linear quadratic
regulator (LQR) and longitudinal double proportional−integral−derivative (DPID) controllers are
designed for trajectory tracking. The results demonstrate the algorithm’s capability to produce
continuous, stable, and collision−free trajectories. Moreover, the lateral acceleration varies within the
range of ±1.5 m/s2, the center of mass lateral deflection angle varies within the range of ±0.15◦, and
the yaw rate remains within the ±0.1◦/s range.

Keywords: rainy weather; quadratic planning; lane change trajectories; multi−objective functions

1. Introduction

With the rapid development of autonomous driving technology, safety concerns are
gradually garnering widespread attention. Within this trend, adverse weather conditions
have gradually emerged as a prominent factor impacting road traffic safety [1]. Recent
relevant studies have indicated [2] that up to 75% of annual traffic accidents occur on
wet and slippery road surfaces. This has presented even more formidable challenges for
autonomous vehicles. Particularly in rainy weather conditions, rapid lane change behavior
is often liable to cause accidents such as side scraping and rear−end collisions [3]. Analyz-
ing the causes of accidents, we found that rainfall leads to a decrease in the road surface
adhesion coefficient, which affects the vehicle’s grip on wet and slippery road surfaces
and has an impact on the vehicle’s stability, thus reducing the braking performance and
extending the emergency braking distance; concurrently, rainfall reduces driver visibility,
thereby affecting the driver’s field of vision for safe operation and increasing reaction
times [4].

However, within the current research landscape, most of the studies within the crucial
domain of lane change motion planning have not adequately addressed the impact of
adverse weather conditions on motion planning. To mitigate uncertainties during au-
tonomous vehicle operation and to enhance driving safety, it is imperative to incorporate
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the potential risks arising from environmental factors into the pivotal domain of motion
planning [5].

Currently, the trajectory planning for autonomous vehicles is rooted in mobile robot
path planning techniques. To adapt a multitude of autonomous navigation techniques to
the domain of autonomous driving and to make the corresponding improvements, consid-
erations are given to road network structures and traffic rule constraints [6]. According to
the application methods of the planning techniques in autonomous driving, these methods
can be roughly categorized into five classes: graph search methods, potential field methods,
interpolation methods, sampling methods, and numerical optimization methods [7].

Among them, graph search−based planning algorithms describe the location of an
object based on the grid it occupies by rasterizing or meshing the state space of the envi-
ronment and deriving a route of movement based on the traversal of the state space [8].
However, related algorithms such as Dijkstra, A*, and D*, to name a few [9], plan paths
that are not necessarily optimal and do not take into account road geometry constraints
or poor trajectory smoothing. Based on potential field methods, the planning approach
introduces the concept of potential fields. It abstracts the vehicle’s motion as the movement
of a vector field, assigning attractive fields to safe areas for the vehicle and repulsive fields
to obstacles. The vehicle’s future trajectory is planned by calculating the resultant force
field it experiences [10]. However, these methods depend on accurately modeling the sur-
rounding environment, which can lead to local optima. To compensate for this deficiency,
Yang W [11] proposed an improved automatic obstacle avoidance method combining A*
and artificial potential fields to solve the planning and tracking problems of autonomous
vehicles in road environments.

Because of the limitations of the potential field method, researchers have also in-
troduced interpolation−based planning algorithms [12]. This method utilizes geometric
curves as its foundation, interpolating intermediate nodes based on known starting and end-
ing points to generate smooth trajectories. This results in generated lane change trajectories
possessing continuous curvature and ensuring that the vehicle reaches its destination at the
desired speed and posture [13]. In their study, Zeng et al. employed third−order B−spline
curves for lane change trajectory planning. By simultaneously considering the constraints
of the host vehicle, they achieved the generation of ideal trajectories [14]. However, this
approach requires the appropriate interpolation density, as interpolation which is too low
can impact accuracy and lead to local errors, while excessively high interpolation can affect
real−time computation. Currently, methods capable of performing motion planning tasks
on structured roads can be classified into two categories: sampling−based methods and
numerical optimization−based methods [15]. Sampling−based methods offer an intuitive
way to express complex abstract spaces and find globally optimal solutions in discretized
intricate road environments [16]. Conversely, numerical optimization−based methods
capitalize on precise modeling, rapidly converging to minimal values through numerical
optimization to identify local optimal solutions [17]. Consequently, the motion planning so-
lutions of most advanced autonomous vehicles leverage the strengths of these two methods,
establishing a hierarchical framework involving sampling followed by optimization [18].

B. Li et al. proposed a layered trajectory planning framework that combines sampling
and numerical optimization. The upper- −level planner samples rough trajectories, while
the lower−level planner refines trajectories using numerical optimization methods [19].
This approach formulates the trajectory generation problem as an optimal control prob-
lem, employing numerical optimization to solve multi−objective functions and obtain
trajectories that are continuous, comfortable, and collision−free, while adhering to various
constraints [20]. Furthermore, to enhance the operational limits of autonomous vehicles,
Chen et al. devised a hierarchical dynamic drifting controller (HDDC) which, through the
implementation of drifting and cornering maneuvers, achieves trajectory tracking control
within and beyond the confines of stability limits [21]. Additionally, Zhang et al. introduced
a synchronous planning and control scheme that obviates the necessity for explicit trajectory
planning and instead determines control inputs based solely on relevant control objectives
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and safety constraints [22]. In a different vein, Chen et al. addressed FWIC−EV chassis
control strategy, proposing a comprehensive control strategy predicated on slip control.
Specifically tailored for regular driving conditions, this strategy aims to minimize tire slip
power loss and bolster the efficacy of the anti−slip braking system [23]. Considering the
impact of environmental factors, Yu et al. [24] introduced an active perception algorithm
that explores the surrounding environment through a loop between perception and trajec-
tory generation. This aims to reduce uncertainties and risks in the environment [25]. Wang
et al. incorporated visibility prediction into trajectory planning, introducing a risk metric
based on predicted visibility to penalize trajectories with high speed and low visibility [26].
Li Z et al. addressed lane change scenarios on wet and slippery road surfaces, introducing
a longitudinal safety model to assess safety before and after lane changes and to mitigate
issues related to lateral slip through tire slip angle evaluation [27]. The aforementioned
references primarily focus on enhancing vehicle stability from the perspective of vehicle
tracking control. Alternatively, within a phase of trajectory planning, the emphasis is
solely placed on ensuring the safety of vehicle operation on wet and slippery road surfaces,
thereby resulting in an excessively cautious generation of the target trajectory.

Therefore, the primary focus of this study is to generate safer and more stable lane
change trajectories on low−adhesion wet and slippery road surfaces. Firstly, based on the
improved minimum safe distance, this paper introduces safety distance constraints for rainy
weather scenarios and the boundaries of lane change feasible regions. Secondly, within
the framework of a layered trajectory planning approach, a visibility cost function and
improved safety distance constraints are incorporated into the dynamic planning process.
Finally, a quadratic programming algorithm is employed to introduce a vehicle stability
objective function, resulting in optimal lane change trajectories that ensure continuity,
stability, and collision−free operation. The specific tasks undertaken in the remainder of
this paper are as follows:

Section 2 quantitatively analyzes the impact of rainfall on lane change behavior,
proposing safety distance and lane change feasible region boundaries for rainy weather
scenarios. Within the sampling−based, followed by the optimization−based, layered
trajectory framework, Section 3 introduces the visibility cost function and the vehicle
stability objective function. Section 4 presents the design of the lateral LQR controller and
the longitudinal DPID controller to verify the effectiveness of the algorithm. Section 5
presents the simulation results and analysis. Section 6 summarizes the contributions and
limitations of this paper, discussing future research directions and challenges.

2. Quantitative Analysis of Rainy Weather Impact on Lane Change Maneuvers

Rainfall has several significant impacts on vehicle operation: firstly, it reduces the
coefficient of friction on road surfaces, leading to diminished braking performance and
extended emergency braking distances. Secondly, rain also decreases driver visibility,
affecting their field of vision for safe driving and increasing reaction times [20]. Therefore,
this paper aims to introduce the attachment coefficient and reaction delay time based on
the minimum safe distance by analyzing the characteristics of lane change behavior in
rainy weather scenarios. At the same time, the concepts of safe distance for lane changing
and following distance in rainy weather scenarios are proposed to establish more accurate
boundary conditions for the feasible domain of lane changing in rainy weather. In order
to consider driving safety and handling stability, this paper introduces the visibility cost
function and the handling stability objective function in the process of dynamic and
quadratic planning. The overall research architecture is shown in Figure 1.
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2.1. Coefficient of Friction

The coefficient of friction is influenced by various factors, including road surface
materials, tire pressure, vehicle speed, and others [7]. J. Tian et al. quantitatively analyzed
the interrelationship between the coefficient of friction [10], vehicle speed, and water film
thickness by exploring the relationship between rainfall intensity and water film thickness.
The relationship between rainfall intensity and water film thickness can be expressed as
follows:

h = 0.1258× l0.6715 × i−0.3147 × d0.7786 × TD0.7261(R2 = 0.93) (1)

where h represents water film thickness (mm), l denotes slope length (m), i stands for
slope gradient (%), d represents rainfall intensity, and TD signifies road construction depth
(mm). According to the findings in reference [7], which reveal the interrelationship between
the coefficient of friction, vehicle speed, and water film thickness, we can deduce the
relationship expression for the coefficient of friction under varying rainfall conditions:

ϕ = 0.6603− 0.0037v− 0.0057h (2)

where ϕ represents the coefficient of friction, and v stands for vehicle speed (m/s). Due to
tire wear requiring deceleration correction, in conjunction with Equations (1) and (2) [8] the
expression for rainy weather braking deceleration [8] is:

a f = ar = ε× ϕ× g (3)

where af and ar are the front and rear wheel braking deceleration; ε is the correction factor,
generally taking the value of 0.9; g is the acceleration of gravity (9.8 m/s2).

2.2. Delayed Reaction Time

In rainy conditions, an increase in rainfall intensity leads to reduced visibility, sub-
sequently affecting the driver’s ability to react while driving and prolonging reaction
times [20]. Therefore, we define driving delayed reaction time as the time interval between
the occurrence of a certain unexpected situation or emergency event and the actual initia-
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tion of the corresponding driving actions [14]. The rainy weather driving delayed reaction
time can be calculated as follows:

t f =
1
v0

(2Sd − S f )−
v0

2a f
− tr (4)

Here, tf represents the delayed reaction time, Sd is the critical value of safe visual distance
(m), Sf stands for rainy weather visibility (m), and tr is the normal reaction time, v0 denotes
the initial vehicle speed, with a value of 1 s [19].

According to the research results [28], it is evident that with an increase in rainfall
intensity, visibility gradually decreases. For specific details, please refer to Figure 2. By
utilizing the critical value of safe visual distance provided in reference [29] and applying
Equation (4) for calculation, we can unveil the interrelationship between delayed reaction
time and visibility under different rainfall intensities [30]. This relationship is depicted
in Figure 3.
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Figure 3. Reaction delay time under different visibility conditions.

2.3. Lane Change Feasible Region in Rainy Conditions

The lane change feasible region is defined as the spatial area where a vehicle can
complete a safe and obstacle−free lane change operation under ideal driving conditions [22].
Typically, determining this range is associated with various factors, including vehicle
kinematic constraints, traffic flow, and the surrounding vehicle environment [8]. However,
performing lane changes under adverse weather conditions requires special attention to
factors such as wet road surfaces, reduced adhesion, and decreased visibility. Hence, it is
imperative to establish safer and more accurate boundaries for the lane change feasible
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region. The spatial extent of the lane change feasible region encompasses the host vehicle’s
current lane and the target lane, as illustrated in Figure 4.
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In this subsection, we introduce the concept of following at a safe distance and lane
changing at a safe distance in rainy weather scenarios to establish the boundary conditions
for the rainy weather lane change feasible region. By thoroughly considering adverse
environmental factors, the aim is to ensure the safety and effectiveness of lane change
operations under unfavorable weather conditions.

2.3.1. Boundary Conditions for the Current Lane Feasible Region

When the host vehicle intends to execute a lane change within its current lane under
rainy conditions, it maintains a specific following distance from the preceding vehicle. If
the host vehicle’s speed is lower than that of the leading vehicle, the gap between them
gradually increases with time. Conversely, when the host vehicle’s speed exceeds that of
the leading vehicle, the gap diminishes progressively. If this distance becomes smaller than
the minimum safe following distance for rainy conditions, any sudden event could lead
to an inevitable collision between the two vehicles. The establishment of this safety gap
is particularly vital on wet and slippery road surfaces in rainy weather. It ensures ample
time and distance between vehicles for drivers to respond to unforeseen situations, thereby
mitigating collision risks and ensuring safe driving. Refer to Figure 5 for a visual depiction.
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In rainy conditions, when accounting for the effects of both delayed reaction time and
the coefficient of friction, the distance covered by the host vehicle during steady−speed
travel is formulated as:

L f = v0(tr + t f + tdd) (5)

Here, v0 denotes the initial vehicle speed; tr is the normal reaction time; and tdd signifies
driving delay time. As delineated in reference [13], the braking process is divided into
phases, where during the initial increase in braking, the distance covered is denoted as Ldi,
and during the continuous braking phase, the distance is Lc. The sum of the distances for
each phase constitutes the total braking distance, denoted as Lf [26].

The total brake application time is denoted as td, comprising brake delay time tdd and
brake duration tdi (td = tdd + tdi); typically, tdd is set at 0.15 s and tdi at 0.1 s [15]. Following
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the lane change, vehicle A maintains a lower trailing speed. Upon the initiation of braking
by vehicle A, vehicle B also engages in braking, with Ll as the braking distance, where
L represents the distance maintained between the two vehicles when at a stop, which is
usually set as L = 2 m [18]. Thus, the following safe distance under rainy conditions is
proposed as:

min(S1) = L f − Ll + L (6)

As shown in Figure 4, the potential collision point of the host vehicle in the current
lane is P1, and the coordinates of the host vehicle are expressed as Formula (7), based on
the dimensional parameters of the vehicle and the kinematics [25]:{

xp1(t) =
∫ tp1

tm
vA(t) cos[θA(t)]dt = D1 +

∫ tp1
tm

vF(t)dt

yp1(t) =
∫ tp1

tm
vA(t) sin[θA(t)]dt = b

(7)

where xp1 and yp1 denote the vehicle coordinate values on the X−axis and Y−axis, tm is the
lane change start time, and tp1 denotes the time when the vehicle is at the collision point
p1.vA is the speed of the host vehicle, θA is the vehicle yaw angle, D1 is the longitudinal
distance between the host vehicle A and the vehicle F in front of it, and b is the lateral
distance driven by the host vehicle. vF(t) is denoted as the speed of vehicle F. Therefore, the
longitudinal distance OP1 of the host vehicle should satisfy the minimum safe following
distance in rainy weather, and the boundary conditions for the current lane in rainy
scenarios are proposed as follows:

OP1 > min(S1) = L f − Ll + L (8)

2.3.2. Boundary Conditions for the Feasible Region of the Target Lane

Subsequent to the leading vehicle’s entry into the target lane, if the trailing vehicle’s
speed surpasses that of the leading vehicle, the distance between the two vehicles will
gradually diminish. Failure to maintain an adequate safety interval during this progression
will inevitably lead to a collision between the leading vehicle and the following vehicle
in the rear of the target lane. Therefore, establishing a secure clearance during a lane
change becomes particularly critical in rainy conditions. It is vital to ensure that on wet
and low−adhesion road surfaces there exists sufficient temporal and spatial room between
vehicles to prevent collisions, as depicted in Figure 6. Assuming that leading vehicle A
executes a lane change from time t0 to time te, with a collision occurring at time tc, the
process analysis is outlined as follows:

S0 + LA + SA ≥ SB (9)

where S0 represents the initial vehicle separation distance, while the length of vehicle A
is denoted as LA. The distance covered by vehicle A from t0 to tc is represented by SA,
and the corresponding distance for vehicle B within the same time interval is denoted
as SB. If vA < vB, a collision between the vehicles will occur within the time tc. To avoid
such a collision, it is necessary to fulfill the condition stated in Equation (9). Conversely, if
vA > vB, the target vehicle A will move away from vehicle B. In this situation, a certain safe
distance for S0 must be maintained to prevent the trailing vehicle from being unable to
avoid a collision through emergency braking.

S0 ≥
{

(vB − vA)(tc + t f ) vA ≤ vB
v2

B
2a f

+ vBt f vA ≥ vB
(10)
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where vA, vB are the speeds of vehicle A and vehicle B; tc is the collision time, and the
minimum safe distance for the rainy weather lane change process is proposed [18]:

min(S0) =

{
(vB − vA)(tc + t f )− LA vA ≤ vB

v2
B

2a f
+ vBt f vA ≥ vB

(11)
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where xp1 and yp1 denote the vehicle coordinate values on the X−axis and Y−axis, tm is the 
lane change start time, and tp1 denotes the time when the vehicle is at the collision point 
p1.vA is the speed of the host vehicle, θA is the vehicle yaw angle, D1 is the longitudinal 
distance between the host vehicle A and the vehicle F in front of it, and b is the lateral 
distance driven by the host vehicle. vF(t) is denoted as the speed of vehicle F. Therefore, 
the longitudinal distance OP1 of the host vehicle should satisfy the minimum safe follow-
ing distance in rainy weather, and the boundary conditions for the current lane in rainy 
scenarios are proposed as follows: 

( )1 1min f lOP S L L L> = − +  (8) 

2.3.2. Boundary Conditions for the Feasible Region of the Target Lane 
Subsequent to the leading vehicle’s entry into the target lane, if the trailing vehicle’s 

speed surpasses that of the leading vehicle, the distance between the two vehicles will 
gradually diminish. Failure to maintain an adequate safety interval during this progres-
sion will inevitably lead to a collision between the leading vehicle and the following vehi-
cle in the rear of the target lane. Therefore, establishing a secure clearance during a lane 
change becomes particularly critical in rainy conditions. It is vital to ensure that on wet 
and low−adhesion road surfaces there exists sufficient temporal and spatial room between 
vehicles to prevent collisions, as depicted in Figure 6. Assuming that leading vehicle A 
executes a lane change from time t0 to time te, with a collision occurring at time tc, the 
process analysis is outlined as follows: 

 
Figure 6. Diagram of lane change process. 

0 A A BS L S S+ + ≥  (9) 

where S0 represents the initial vehicle separation distance, while the length of vehicle A is 
denoted as LA. The distance covered by vehicle A from t0 to tc is represented by SA, and the 
corresponding distance for vehicle B within the same time interval is denoted as SB. If vA 
< vB, a collision between the vehicles will occur within the time tc. To avoid such a collision, 
it is necessary to fulfill the condition stated in Equation (9). Conversely, if vA > vB, the target 

Figure 6. Diagram of lane change process.

Let the collision point of the host vehicle in the target lane be P2, as shown in Figure 4;
similarly, its coordinates (xp2, yp2) can be expressed as:{

xp2(t) =
∫ tp2

tm
vA(t) cos[θA(t)]dt =

∫ tp2
tm

vR(t)dt− D2

yp2(t) =
∫ tp2

tm
vA(t) sin[θA(t)]dt = w

(12)

where xp2 and yp2 denote the vehicle coordinate values on the X-axis and Y-axis, tm is
the lane change start time, tp2 denotes the time when the vehicle is at the collision point
p2, VA is the velocity of the host vehicle, θA is the vehicle yaw angle, vR(t) is denoted as
the speed of the rear vehicle B, D2 is the longitudinal distance between the host vehicle A
and the rear vehicle B, and W is the lateral distance driven by the host vehicle. Therefore,
the longitudinal distance OP2 from the host vehicle should satisfy the minimum lane
change safety distance constraint in rainy weather, and the proposed lane change boundary
condition for the target lane in a rainy weather scenario is:

OP2 > min(S0) =

 (vB − vA)
(

tc + t f

)
− LA vA < vB

v2
B

2a f
+ vBt f vA ≥ vB

(13)

The coordinates of the potential collision points, P1 and P2, can be determined based
on Equations (7) and (12). The constraints that P1 and P2 need to satisfy can be derived
from Equations (8) and (13). Consequently, the feasible region for rainy day lane changing
can be ascertained, as illustrated in Figure 4. The trajectories of OP1 and OP2 serve as
boundary constraints, and the spatial region between OP1 and OP2 constitutes the viable
rainy day lane change domain.

3. Lane Change Trajectory Planning
3.1. Dynamic Programming
3.1.1. Discrete Space Based on Rainy Day Lane Change Feasible Region

Considering the complexity of the trajectory search and the real−time requirements,
we opted for the adoption of the Frenet coordinate system for computational convenience.
The Frenet coordinate system employs the lane centerline as its reference, as illustrated in
Figure 7. Through coordinate transformations between the Frenet and Cartesian coordinate
systems, the trajectory search problem in roads with changing curvatures is simplified.
It is transformed into a search for lateral offset L based on the reference axis S in the
orthogonal space.
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where lon = [a0, a1, a2, a3, a4, a5] is the longitudinal trajectory function coefficients, andlat = 
[b0, b1, b2, b3, b4, b5] is the lateral trajectory function coefficients; the rough trajectory of the 
lane change can be obtained as shown in Figure 9. It is represented in the Frenet coordinate 
system, as shown in Figure 10. 

Figure 7. Transformation to Frenet coordinate system, Where the red line indicates the reference line
and the orange line indicates the lane center line.

First, the extent of the search space is defined based on the rainy weather permutation
feasible domain. Then, the longitudinal lengths and lateral offsets of the sampling points
are defined to discretize the search space into a grid, as shown in Figure 8. The sampling
points are generated using the following rules:

S = i× ∆s (14)

L = j× ∆l (15)

where Nij denotes the vertices, i and j denote the row and column numbers, ∆s denotes the
S−direction unit spacing, and offset ∆l is the sampling lateral offset.
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Figure 8. Sampling points within rainy weather lane change feasible region.

We define the collection of sampling points, Nij, with identical longitudinal distances
as layeri, and employ it to construct the search space for generating preliminary lane change
trajectories. This search space encompasses a series of contiguous trajectory clusters, serving
as potential lane change candidates. Through dynamic programming computations, we
identify sampling points that fulfill the minimum cost criterion. Subsequently, accounting
for the vehicle’s smooth operation, the first and second derivatives of the trajectory are
continuous and smooth. Therefore, we employ quintic polynomials to connect adjacent
sampling points, producing rough lane change trajectory candidates. Ultimately, we
formulate a cost function to assess the quality of these trajectory candidates.

x(t) = a0t5 + a1t4 + a2t3 + a3t4 + a4t5 + a5
y(t) = b0t5 + b1t4 + b2t3 + b3t4 + b4t5 + b5

(16)

where lon = [a0, a1, a2, a3, a4, a5] is the longitudinal trajectory function coefficients, and
lat = [b0, b1, b2, b3, b4, b5] is the lateral trajectory function coefficients; the rough trajectory
of the lane change can be obtained as shown in Figure 9. It is represented in the Frenet
coordinate system, as shown in Figure 10.
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3.1.2. Cost Function

This subsection focuses primarily on elucidating the process of generating lane change
trajectories tailored for environments characterized by reduced visibility and diminished
road surface friction. We employ a cost function to systematically evaluate trajectory
candidates with the aim of selecting the optimal driving behavior. Drawing from the
content of reference [26], the cost function typically encompasses components related to
the lane centerline and those associated with avoiding collisions with obstacles.

In this subsection, we account for the impact of rain on the driver’s visual field for
safe driving, introducing a visibility−based cost function. Additionally, we enhance the
constraint conditions of the collision avoidance cost function based on rainy day safety
distances. We aggregate the aforementioned cost function components through weighted
summation, thereby defining the cost function fDP. Herein, wvis, wobs, and wref, respectively,
represent the corresponding weight coefficients for the cost terms.

fDP = ωvis Jvis + ωobs Jobs + ωre f Jre f (17)

Jvis = k1e−(Sn−S f )
2

(18)

In this context, Sn represents the sampling points, Sf denotes the visibility (m) during
rainy weather conditions, and k1 stands for the proportional coefficient. Under rainy
conditions, due to the decrease in visibility, it becomes necessary to reduce the scope of the
trajectory planning to enhance driving safety. Additionally, when the range of sampling
points exceeds the current visibility limitations, the visibility cost function Jvis is introduced
to impose penalties. Similarly, during favorable visibility conditions, it becomes feasible
to expand the trajectory planning scope, thereby enabling the dynamic adjustment of
trajectory ranges. The parameter values are detailed in Table 1.

Jobs


0

Jnudge = k1 × e−(d−dc)

Jcollision = ∞

d > dn
dc ≤ d ≤ dn

d < dc

(19)
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dc = k2min(S0) + k3min(S1) (20)

Table 1. Simulation parameters.

Parameters Value

Vehicle weight, m 2.02 t
Sampling time, t 0.05 s

Wheelbase, L 2.947 m
wobs, wref, wacc, wjerk, wsmo 300, 100, 20, 80, 60
k1, k2, k3, k4, k5, k6, k7, k8 40, 20, 15, 30, 20, 20, 10, 5

Moment of inertia, Iz 4.095 t/rad
Distance constant dn, dc 4, 2

Sampling lateral distance, ∆l 1 m
Longitudinal sampling distance, ∆s 10 m
Front wheel cornering stiffness, cf 175.016 kN/rad
Rear wheel cornering stiffness, cr 130.634 kN/rad

Distance from center of mass to rear axis, b 1.682 m
Distance from center of mass to front axle, a 1.265 m

The collision avoidance cost function, denoted as Jobs, imposes penalties based on the
distance between the ego vehicle and the obstacles. With the slippery road conditions and
the reduced coefficient of friction due to rainy weather, the braking performance deterio-
rates, leading to an increase in braking distance. Therefore, we introduce an exponential
function, as defined in Equations (6) and (11) to establish a safety distance constraint and to
apply penalties to sampling points. Here, d represents the distance between the ego vehicle
and the obstacles; k1, k2, k3, and k4 are proportionality coefficients, and dn signifies the
rainy weather nudge safety distance. When dc ≤ d ≤ dn, the exponential function Jnudge is
introduced, representing a sharp increase in collision cost as the distance decreases. When
d becomes smaller than the minimum collision distance dc, the cost function Jcollision reaches
a maximum value. The parameter values are detailed in Table 1.

Jre f =
∫ (

fre f (s)− gl(s)
)2

ds (21)

The lane reference line cost function, denoted as Jref, is designed to encourage the
vehicle to travel along the centerline of the lane. Here, fref represents the lane centerline,
gl signifies a sampling point, and Jref imposes penalties on sampling points gl that deviate
significantly from the lane centerline. According to the cost function, a traversal of the
sampling points is performed to search for the sampling point with the minimum cost.
Subsequently, by connecting the sampling points using a fifth−degree polynomial, a
preliminary lane change trajectory is obtained, as illustrated in Figure 11.

3.2. Quadratic Programming

In this subsection, the precise trajectory optimization problem undergoes a trans-
formation into an optimal control problem (OCP). This entails the formulation of an
objective function that necessitates construction and subsequent solution, while adhering
to a spectrum of constraints [22]. To accommodate considerations of passenger comfort,
it is customary to construct acceleration and jerk objective functions, coupled with the
design of a smoothness objective function, all aimed at ensuring a comfortable driving
experience [28]. Nevertheless, within the context of rainy weather scenarios, the demands
placed on trajectory maneuverability become notably stringent due to the potential occur-
rence of sideslip phenomena during lane change maneuvers. Consequently, we introduce a
maneuver stability objective function and improve the dynamic constraints to effectively
address this challenge.
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The solution of the precise trajectory needs to be based on the rough trajectory, and
we use the derived rough trajectory as a guideline and also as a guess value of the obstacle
nudge distance to provide the initial value for the solution of the precise trajectory, as
shown in Figure 12. In this paper, the objective function of the exact trajectory is optimally
solved based on the method of quadratic programming. Its standard form is expressed as:

minimize 1
2 XT HX + f TX

st.Ax ≤ b
(22)

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 12 of 20 
 

 
Figure 11. Coarse lane change trajectory obtained via dynamic programming. In the illustration, the 
red lines depict the cluster of lane change trajectories, the green lines represent the coarse lane 
change trajectory, the blue points are sampling points, while the grey rectangles represent obstacle 
vehicles driving at a constant speed. 

3.2. Quadratic Programming 
In this subsection, the precise trajectory optimization problem undergoes a transfor-

mation into an optimal control problem (OCP). This entails the formulation of an objective 
function that necessitates construction and subsequent solution, while adhering to a spec-
trum of constraints [22]. To accommodate considerations of passenger comfort, it is cus-
tomary to construct acceleration and jerk objective functions, coupled with the design of 
a smoothness objective function, all aimed at ensuring a comfortable driving experience 
[28]. Nevertheless, within the context of rainy weather scenarios, the demands placed on 
trajectory maneuverability become notably stringent due to the potential occurrence of 
sideslip phenomena during lane change maneuvers. Consequently, we introduce a ma-
neuver stability objective function and improve the dynamic constraints to effectively ad-
dress this challenge. 

The solution of the precise trajectory needs to be based on the rough trajectory, and 
we use the derived rough trajectory as a guideline and also as a guess value of the obstacle 
nudge distance to provide the initial value for the solution of the precise trajectory, as 
shown in Figure 12. In this paper, the objective function of the exact trajectory is optimally 
solved based on the method of quadratic programming. Its standard form is expressed as: 

1minimize 
2

               .

T TX HX f X

st Ax b

+

≤  
(22) 

 
Figure 12. Trajectory optimization process based on quadratic programming. (The process begins 
with a coarse trajectory as the initial solution and utilizes the lane centerline S as a reference line. 
The spatial coordinates are discretized into a coordinate system with a resolution of Δs. The upper 
and lower bounds of L are determined based on road boundaries and obstacle information. By solv-
ing for each Li, the precise trajectory is obtained. Where the orange line forms the discretised 

Figure 12. Trajectory optimization process based on quadratic programming. (The process begins
with a coarse trajectory as the initial solution and utilizes the lane centerline S as a reference line. The
spatial coordinates are discretized into a coordinate system with a resolution of ∆s. The upper and
lower bounds of L are determined based on road boundaries and obstacle information. By solving
for each Li, the precise trajectory is obtained. Where the orange line forms the discretised sampling
space, the indigo curve is the rough trajectory, the magenta curve is the precise trajectory, and the
green rectangle is the obstacle vehicle).

In the equation, x represents the control variables, H denotes the Hessian matrix, and f
is the gradient vector. The hard constraints encompass the inequality constraints that must
be adhered to during the lane change process. The objective function is intricately tied to
the trajectory’s smoothness and acceleration variation. To satisfy the criteria for comfort,
stability, and trajectory smoothness during rainy weather lane changes, the objective
function is defined as follows:

fQP =
Nm
Σ
i

ωsta Jstability + ωacc Jacc + ωjerk Jjerk + ωsmo Jsmooth (23)
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where Nm signifies the total number of trajectory nodes in the optimization stage, ωsta
represents the weight for the stability cost, ωacc denotes the weight for the acceleration
cost, ωjerk stands for the weight for the jerk cost, and ωsmo indicates the weight for the
smoothness cost.

Jstability = k4e−(al−aldes)
2
+ k5e−(ϕ−ϕdes)

2
(24)

The stability objective function, denoted as Jstability, is defined using parameters repre-
senting lateral acceleration and yaw angle, which characterize stability. Here, ϕ represents
the yaw angle; ϕdes signifies the desired minimum yaw angle; and al and aldes, respectively,
denote lateral acceleration and desired minimum lateral acceleration along the l direction,
while k4 and k5 are proportionality coefficients. By imposing penalties on the trajectory
points with significant deviations in lateral acceleration and yaw angle, manipulation
stability and passenger comfort are improved.

as,i =
si+1 − 2si + si−1

∆t2 (25)

al,i =
li+1 − 2li + li−1

∆t2 (26)

Jacc = a2
s,i + a2

l,i (27)

where as,i and al,i denote the acceleration along the s and l directions; this penalty function
makes the curvature and longitudinal acceleration of the exact trajectory relatively flat. Jjerk
is denoted as the rate of change of the acceleration and is defined as:

js,i =
si+2 − 3si+1 + 3si − si−1

∆t3 (28)

jl,i =
li+2 − 3li+1 + 3li − li−1

∆t3 (29)

Jjerk = j2s,i + j2l,i (30)

To ensure the smoothness of driving, penalties are imposed for abrupt changes in
acceleration. Here, js,i and jl,i, respectively, denote the rates of acceleration variation along
the s direction and l direction.

Jsmooth = k6

∫ (
f ′(s)

)2
ds + k7

∫
( f ′′ (s))

2
ds + k8

∫
( f ′′′ (s))

2
ds (31)

The smoothing objective function is denoted as Jsmooth, which introduces penalties for
trajectories with higher curvature to reduce the degree of bending. Here, f′(s) represents
heading error, f′′(s) is related to curvature, and the derivative of curvature, denoted as
f′′′(s), ensures minimal variation in trajectory curvature. The coefficients k6, k7, and k8 are
proportionality factors. The parameter values are detailed in Table 1.

Precise trajectory planning not only drives the minimum convergence point of the
objective function but also adheres to vehicle dynamic constraints and environmental limi-
tations. Considering the influence of wet and slippery road conditions and low adherence
rates, the vehicle dynamic constraints are modified by incorporating Formula (2). This
modification ensures that acceleration remains within the physical limits of the vehicle.
Environmental constraints are often formulated using the circular disk model, as detailed
in the reference [26].

a2
s,i + a2

l,i ≤ (ϕamax)
2 (32)

where as,i is the longitudinal acceleration, al,i is the lateral acceleration, and amax is the
maximum acceleration.
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4. Trajectory Tracking Control

Driving in rainy weather is frequently affected by factors such as slippery roads and
reduced traction; this makes lateral stability and longitudinal speed and position control of
the vehicle critical. Therefore, in this paper, the lateral LQR controller and the longitudinal
DPID controller are used to implement the trajectory tracking control [12], although the
parameter settings of these two controllers are complex and computationally expensive.
However, they have better stability and can reduce the risk of sideslip and loss of control.
In addition, they are adaptable and robust in unstable environments. For trajectory tracking
control, the focus is on the lateral motion of the vehicle. In order to simplify the calculation,
a two−degrees−of−freedom vehicle dynamics model is used in this paper [15].{

may = Fy f + Fyr

Iz
·

ω = l f Fy f − lrFyr
(33)


·

vy = −
(

vx +
c f l f−cr lr

mvx

)
ω− c f +cr

mvx
vy +

c f
m δ f

·
ω = −

(
c f l2

f +cr l2
r

Izvx

)
ω− c f l f−cr lr

Izvx
vy +

c f l f
Iz

δ f
(34)

where ay is the acceleration along the body coordinate y direction at the center of mass of
the vehicle; m is the mass of the vehicle; Fyf and Fyr are the combined lateral forces on the
front and rear axle tires, respectively; Iz is the rotational moment of inertia of the vehicle
around the z-axis of the center of mass; ω is the yaw rate of the vehicle; lr and lf are the
distances from the vehicle’s center of mass to the front and rear axles of the vehicle; cf and
cr are the lateral deflection stiffnesses of the tires on the front and rear axles of the vehicle,
respectively; and δf is the front wheel angle.

Lateral and heading errors are mainly considered when the vehicle performs tracking
to control the reference trajectory [21]. The error state space equation is expressed as:

·
X = AX + BU (35)

A =


0 1 0 0

0 − c f +cr
mvx

c f +cr
mvx

− c f l f−cr lr
mvx

0 0 0 1

0 − c f l f−cr lr
Izvx

c f l f−cr lr
Iz

−
c f l2

f +cr l2
r

Izvx

 (36)

X =


ey
·

ey
eϕ
·

eϕ

 B =


0
c f
m
0

c f l f
Iz

 U =
[
δ f

]
(37)

where ey is the lateral error;
·
ey is the lateral velocity error; eϕ is the heading angular error;

and
·
eϕ is the heading angular rate error. By designing a control step of T and utilizing a

discrete LQR controller, the system is controlled based on its state−space equations [12]:

x(k + 1) = Adx(k) + Bdu(k) (38)

where Ad = (I − TA/2)−1(I + TA/2); Bd = TB; x(k) represents the system state at time k;
and u(k) denotes the control input at time k [17]. When performing tracking control, the
controller’s objective is not only to reduce trajectory tracking errors but also to minimize
the control effort, thus ensuring stable vehicle operation. Therefore, the objective function
of the LQR controller is defined as follows:

u = −Kx (39)
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J(x) =
∞

∑
t=0

xTQx + uT Ru (40)

J(x) =
∞

∑
t=0

xT
(

Q + KT RK
)

x (41)

where x represents the state variables, u represents the control variables, Q is the weight
matrix for the state variables, and R is the weight matrix for the control variables. Assuming
K is the control gain matrix of the discrete LQR controller, there exists a matrix p that
stabilizes the system’s state space. This can be derived as follows:

K =
(

R + BT PB
)−1

BT PA (42)

P =−ATPB(R + BTPB)−1BTPA + ATPA + Q is the positive definite solution of the Riccati
equation; the longitudinal trajectory tracking control is mainly based on the literature [20]
on the design of the longitudinal dual PID controller, the position PID controller, and the
velocity PID controller for the transverse and longitudinal synergistic tracking control of
the change in track trajectory.

5. Discussion

This subsection primarily delves into the simulation conclusions. In order to validate
the effectiveness of the algorithm proposed in this paper, simulations were conducted on
the joint simulation platform of MATLAB R2020, Carsim, and PreScan. These simulations
were executed on a 12th Gen Intel Core i7−12700H CPU, which possesses 16.0 GB RAM,
running at 2.30 GHz under Microsoft Windows 11. In this simulation, MATLAB R2020
provides the algorithmic model, Carsim contributes the dynamics model, and PreScan
constructs the environmental scenarios. The trajectory−tracking controller tracks the entire
trajectory. The simulation key parameters are set as shown in Table 1.

In the simulation environment configuration, we chose a heavy rain scenario with
a traffic accident occurrence rate accounting for 60% [1]. Within this scenario, rainfall
intensity ranges from 25 to 49.9 mm over a 24 h period. According to information from
reference [7], the road surface friction coefficient for this scenario is established as ϕ = 0.3.
Employing Formula (4), the delay response time is calculated to be tf = 1.221 s. For the
simulation setup, the ego vehicle is represented by a red rectangular block, designated
with a velocity of vego = 10 m/s. The surrounding obstacle vehicles are depicted as blue
rectangular blocks, with a set velocity of vobs = 5 m/s.

We present two randomly generated simulation scenarios, as illustrated in Figures 13
and 14. From these scenarios, it can be observed that considering visibility cost and ne-
glecting visibility cost can lead to the generation of entirely distinct trajectories. Through
thorough comparative analysis, we can discern that the incorporation of more accurate rainy
day lane change boundary conditions, the establishment of feasible rainy day lane change
regions, and the introduction of visibility cost functions during the dynamic programming
phase collectively contribute to the observed differences.

In the lane change process spanning 0 m to 20 m, trajectories accounting for visibility
cost exhibit a more conservative and secure nature when compared to trajectories disre-
garding visibility cost. On the other hand, during the lane change and collision avoidance
phase spanning 20 m to 40 m, the integration of an enhanced safety distance constraint
within the collision avoidance cost function often leads the ego vehicle to exhibit a tendency
to distance itself from surrounding vehicles. This outcome aligns more closely with the
experiential and behavioral habits of human drivers.
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Figure 14. Ego vehicle right lane change scenario.

While focusing on the safety of lane changing under rainy conditions, comfort and
maneuverability are of equal importance in vehicle lane change maneuvers. Therefore, in
order to verify whether the algorithm generates trajectories with higher maneuverability
and stability, this study shows the profiles of the vehicle states with or without considering
the maneuverability objective function for both the left and right lane change scenarios
under rainy conditions, as shown in Figure 15.

When assessing stability, lateral acceleration emerges as a pivotal evaluation metric,
as manifested in Figure 15a,b. Throughout the lane change process, lateral acceleration
consistently oscillates within the range of ±1.5 m/s2. Thorough comparative analysis
reveals that, with the introduction of a stability objective function during the quadratic
programming phase, which is notably evident in the left/right lane change scenarios, the
vehicle’s lateral acceleration curve exhibits a more pronounced reduction trend. Specifically,
the peak lateral acceleration experiences a decrease of approximately 1 m/s2 compared to
the scenario where the stability objective function is not considered.

Furthermore, we investigated the sideslip angle in different scenarios, as depicted in
Figure 15c,d. The variation in the sideslip angle reflects the extent of deviation between the
vehicle’s travel direction and the road direction. In both lane change scenarios, the sideslip
angle consistently oscillates within the range of ±0.15◦. Notably, when considering the
stability objective function, the sideslip angle curve exhibits smaller peaks in comparison
to the scenario where stability considerations were absent, oscillating within the range
of approximately ±0.1◦. This indicates that the incorporation of the stability objective
function during rainy day lane changing results in smoother fluctuations of the sideslip
angle, contributing to an overall smoother lane change process.

In addition, the yaw rate serves as a vital parameter for assessing stability and comfort
during the lane change process. As depicted in Figure 15e,f, the yaw rate curve remains
within the range of ±0.1◦/s throughout the entire process. In particular, at around 5 s, the
yaw rate curve, influenced by the introduction of the stability objective function, exhibits
a noticeable reduction in peak values. This implies that the incorporation of the stability
objective function leads to a more stable yaw rate throughout the lane change process,
thereby enhancing passenger comfort and overall stability.
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Figure 15. State profiles of vehicle maneuverability ((a,c,e) are the vehicle state profiles for the left
lane change scenario with or without considering the maneuverability objective function, and (b,d,f)
are the vehicle state profiles for the right lane change scenario with or without considering the
maneuverability objective function).

6. Conclusions

In this paper, we introduce a trajectory planning algorithm for the lane changing of
autonomous vehicles in rainy day scenarios for the safety and stability of the lane change
operation of autonomous vehicles under adverse weather conditions.

(1) Introduction of friction coefficient and delayed reaction time. In this study, we
first consider the slippery condition of the road on rainy days and introduce the friction
coefficient and delayed reaction time as the key factors, to accurately calculate the safe
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distance for following and the safe distance for changing lanes and thereby to establish the
boundaries of the feasible domain of lane changing on rainy days.

(2) Introduction of visibility cost function and improvement of safety distance con-
straints. A hierarchical trajectory planning strategy is adopted and dynamic programming
is used to search for rough trajectories to obtain robust and safe initial solutions.

(3) The operation stability objective function is introduced. For the sideslip problem
on a wet and slippery road, the quadratic programming algorithm is improved with the
introduction of the stability objective function, which improves the smoothness of vehicle
traveling and effectively reduces the potential risk of sideslip.

The simulation results show that the algorithm makes the host vehicle generate more
conservative and safe trajectories in bad weather. It is more inclined to move away from
the surrounding vehicles during the lane change obstacle avoidance phase. Meanwhile,
the lateral acceleration varies within the range of ±1.5 m/s2, the sideslip angle fluctuates
within the range of ±0.15◦, and the yaw rate is kept within the range of ±0.1◦/s, fulfilling
the requirements of comfort and stability. In this paper, although the environment and
other influencing factors are considered, there is no real vehicle test under severe weather,
and there are still complex weather environment situations that have not been considered.
In the future, the lane change problem under different severe weather conditions can
be investigated and more parameters and strategies can be explored to maintain the
adaptability of the algorithm in diverse weather conditions. Additionally, in this paper, we
only consider the host vehicle and the surrounding obstacle vehicles at a constant speed; in
the next stage of research, we will consider the surrounding obstacle vehicles as having a
variable speed in the speed planning stage of the host vehicle in order to adapt to more
complex driving scenarios.
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