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Abstract: The state of charge of a battery depends on many magnitudes, but only voltage and
intensity are included in mathematical equations because other variables are complex to integrate
into. The contribution of this work was to obtain a model to determine the state of charge with
these complex variables. This method was developed considering four models, the multilayer feed-
forward backpropagation models of two and three input variables used supervised training, with the
variable-learning-rate backpropagation training function, five and seven neurons in the hidden layer,
respectively, achieving an optimal training. Meanwhile, the radial basis neural network models of
two and three input variables were trained with the hybrid method, the propagation constant with a
value of 1 and 80 neurons in the hidden layer. As a result, the radial basis neural network with the
variable-learning-rate training function, considering the discharge temperature, was the one with the
best performance, with a correlation coefficient of 0.99182 and a confidence interval of 95% (0.98849;
0.99516). It is then concluded that artificial neural networks have high performance when modeling
nonlinear systems, whose parameters are difficult to measure with time variation, so estimating them
in formulas where they are omitted is no longer necessary, which means an accurate SOC.

Keywords: nickel metal hydride (NiMH) batteries; hybrid vehicles (HEV); state of charge (SOC);
artificial neural network (ANN)

1. Introduction

Currently the state of charge (SOC) is a highly relevant parameter that is applied
in cases where the accumulator is constantly subjected to charging and/or discharging
scenarios, such as in hybrid vehicles or microgrids. The SOC is defined as the expected
energy as a percentage of the nominal capacity, which is still available to be used. This
parameter also depends on temperature, self-discharge, charge/discharge current rates,
time of use and hysteresis. Because these parameters are not measurable, the need arises to
estimate it based on other measurements available in the accumulators, such as voltage
and current.

For this reason, it is imperative to develop a model with artificial intelligence tech-
niques, which allows us to know the state of charge more accurately than current methods,
to improve the energy management of a nickel metal hydride (NiMH) battery pack.

Factories and research institutions have increased their efforts to introduce hybrid
and electric vehicles, which generate low or no greenhouse gas emissions. However,
the systems that store enrgy in this new type of vehicle maintain high operating costs,
limited life and are heavy. For this reason, the only way for these systems to proliferate
is to generate an operating cost less than or equal to that of traditional vehicles with an
internal combustion engine (ICE) [1]. Batteries directly contribute to the advancement of
technologies ranging from portable electronics to electric drive of intelligent vehicles. Due
to superior performance, such as light weights, high energy density [2], low self-discharge
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rate [3], no memory effect [4] and long service life [5], nickel metal hydride batteries stand
out among rechargeable batteries and are widely used in hybrid vehicles (HEV) as the main
power source and energy storage unit. To improve the performance of the NiMH battery,
a battery management system (BMS) is required to provide protection and monitor the
battery energy over its entire lifetime [6]. For battery management, accurate SOC estimates
are crucial [7]. The United States Advanced Battery Consortium (USABC) defines SOC
as the percentage of capacity remaining at rated capacity under the same conditions [8].
It is an indicator not only for predicting the remaining mileage of hybrid vehicles but
also for determining a safe management strategy to prevent the battery from experiencing
overcharge and over discharge. The accurate SOC value can characterize the battery usage
and the degree of charge/discharge, thus providing a basis for formulating the ideal battery
charge/discharge strategy.

The electrochemical reactions that occur inside the nickel metal hydride cells when
they are charged are given by the positive electrode, which is nickel oxyhydroxide, while the
active material of the negative electrode is hydrogen, thanks to a metal alloy that generates
the storage of hydrogen during the charge cycle and exhaust in the discharge cycle [9].
Additionally, the metal alloy as a negative electrode greatly reduces the environmental
impact.

Potassium hydroxide is the main compound in the electrolyte of NiMH batteries; the
electrochemical reactions are presented in Table 1.

Table 1. Electrochemical reactions of NiMH batteries.

Reaction Type Electrochemical Reaction
. _ disch: —
Negative electrode MH+OH™ = dllsacr aergeM +H,O+e
e . _ isch . -
Positive electrode NiOOH + HyO + e~ = o gaergeNl(OH)z + OH
. . disch: .
Full reaction MH + NiOOH = §7C F°M + Ni(OH),

Therefore, the principle of operation of these batteries is based on the absorption
and desorption reactions of hydrogen in the negative electrode. In this way, the main
advantages and disadvantages that they present in comparison with nickel-cadmium
batteries are expressed [9-11]:

Advantages:

High specific energy (greater than 90 Wh/Kg, 30% more than nickel-cadmium technology).
High specific power (over 200 W/Kg).

Prominent energy density (over 150 W/L, 40% more than nickel-cadmium technology).
Cadmium-free technology, resulting in less pollutant emissions.

Disadvantages:

e  The metal alloys used to maintain stable negative electrode performance at high
temperatures prove to be more expensive than nickel-cadmium technology.

e Compromised performance at high temperatures due to poor performance of the
negative electrode metal alloy characteristics.

e High self-discharge rate between 15 and 25% per month versus approximately 10%
for nickel-cadmium batteries.

Therefore, the kinetics of the charge transfer reaction are highly affected by tempera-
ture [12]. Higher C rates result in higher temperatures on the primary surface of the battery,
since the current being discharged from the battery increases when the value of C is very
high. Therefore, temperatures above 40 °C have a negative impact on performance and
battery life. Temperatures ranging from —15 °C to 40 °C are ideal for the operation of
lithium-ion batteries [13].

In studies like [14], the authors show that the resistance varies in m(2 in the charge and
discharge process. However, when the battery is in the process of discharging, the resistance
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value increases, but when the battery is being charged, this value starts to decrease. For this
reason, measuring such small values leads to great uncertainty, which is why it is necessary
to implement more sophisticated estimation processes such as artificial neural networks
(ANNS). Therefore, the temperature guarantees a long period of life, high performance and
safe operation of power systems in electric vehicles (EVs) [15].

On the other hand, several models to estimate the state of health (SOH) have been
developed including variables such as storage temperature and SOC. Additionally, energy
yield, cell temperature and C rate are used to model SOH in research [16]. Something
similar occurs when the SOC models are analyzed under different driving cycles such as
the Environmental Protection Agency (EPA), China light-duty vehicle test cycle passenger
cars (CLTC-P) and Worldwide Harmonized Light Vehicles Test Procedure (WLTC), where
temperature plays a fundamental role and needs to be constantly monitored because more
advanced investigations suggested in [17] can be carried out later, such as cell degradation,
thermal runaway and gas generation. At the same time, analyzing the temperature of
the cell on the surface is the most suitable, given that previous studies [16] show this
importance at the time of analysis, since the highest concentration of heat is generated
at that point. In relation to the implications, implementing the temperature variable to
estimate the SOC of battery cells in EVs is essential.

Batteries often have nonlinear characteristics and time-varying characteristics. In
practical applications, it is very difficult to estimate the SOC accurately due to the inac-
curacy of the initial SOC and past calculation. At present, several research methods have
been proposed to estimate the SOC, which can be mainly classified into three categories:
(1) experiment-based methods, (2) model-based methods and (3) data-driven methods.
Each has its own advantages and disadvantages in certain aspects, which are presented in
Table 2 [18].

Table 2. Comparison of SOC estimation methods [19,20].

Method Description Advantages Disadvantages

Coulomb Discrete integral of the input ~ Simple, cost-effective, and intuitive It is necessary to know the first SOC

Counting current. method. value.

(CO) Combinations with other It is affected by error accumulation.
technologies are possible. It requires precise current measurement.

High computational efficiency. It cannot handle partial charge/discharge
cycles.

Open- Matching of the terminal The physical properties of the cells Internal resistance and charge

Circuit voltage with the OCV-SOC are considered. redistribution phenomena decrease the
Voltage lookup table. Combinations with other correlation between voltage and state of
(0CVv) technologies are possible. charge.

High computational efficiency. A flat SOC-OCV curve makes the SOC
estimate more sensitive to measurement
noise and error.

Model- SOC estimated from the It checks the electrical behavior of the  To do this, you need to know the
Based relationship between battery. reference initial parameters of the battery.

measured operation
parameters (voltage, current
and temperature) and SOC
employing a battery-derived
model.

It can be used as a model for online
monitoring. Parameters change
dynamically based on SOC.
Combinations with other
technologies are possible.

Only new batteries can be precisely
parameterized in the laboratory.

It requires high computing power.

The exactitude of the estimate depends
heavily on temperature.
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Table 2. Cont.

Method Description Advantages Disadvantages
Machine SOC estimated with a Combinations with other Training the tool requires large amounts
Learning black-box function technologies can switch to gray-box of historical data.
approximation tools such as functionality. Collecting training data requires
artificial neural networks. Useful for online and offline expensive test equipment and lengthy
monitoring. testing.
The accuracy is very high after good  The relationship between voltage,
training and fine-tuning. temperature, current and SOC is hidden
(black box). Further data processing and
filtering may be required.
State It uses nonlinear Kalman Self-correction method. It can be computationally intensive and
Observer filters (KFs) for estimating It can provide information about complex.

SOC as a state variable of the

system.

estimates accuracy.
High accuracy and robustness.

It requires an accurate model of
electrochemical cells.
Instability if the gain is undesirable.

Equivalent circuit models (ECMs) show a great deficiency in predicting battery termi-
nal voltage at low SOC, which increases battery risk at low voltage levels [21]. Furthermore,
developing methods from experimental data using controlled methods helps to increase
the prediction of the state of charge, since the dynamics of the battery can be captured with
sufficient accuracy [22]. Additionally, the dynamic neural network time series method is
used to estimate the SOC of the lithium-ion battery, which is improved on the basis of the
classic closed-loop nonlinear auto-regressive models with exogenous input neural network
(NARXNN) model, and the open-loop NARXNN model considering expected output is
proposed [1].

Data-driven methods: with the development of artificial intelligence, data-driven
methods have been proposed in recent years, including backpropagation neural networks,
fuzzy-logic principles, etc. Wang et al. [23] used fuzzy logic to estimate the SOC. According
to Qian et al. [24], the nonlinear behavior of the open-circuit voltage versus SOC comprises
the model. Chen et al. presented two backpropagation neural networks for SOC estimation.
Their model-free characteristics and flexibility make them suitable for nonlinear mapping
approximations. Since the battery is affected by various chemical factors, the SOC value is
variable. Such methods can automatically adjust the internal parameters according to the
changes in the system, which is a class of ideal SOC estimation methods [25]. However,
the estimation accuracy is highly dependent on the quality and quantity of experimental
data. Therefore, the accuracy of the neural network output is closely related to the accuracy
of the original training data. Only when the training data are sufficiently accurate is the
neural network output of practical importance. Therefore, the premise of improving the
output accuracy of the multilayer perceptron (MLP) model using backpropagation training
for the neural network is to improve the accuracy of the SOC training data.

Accurate estimation of the battery SOC can contribute to reliable and safe battery
utilization. The main contributions of this method can be summarized as follows. (a) An
improved ampere-hour counting method that takes capacity attenuation into account to
calculate SOC is proposed, which improves the accuracy of SOC calculation at different
capacity attenuation stages. (b) The backpropagation neural network (BPNN) is combined
with an improved ampere-hour counting method to estimate SOC [26]. A summary of the
neural network method applied to determine the SOC of a NiMH battery is presented in
Table 3 [27].
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Table 3. Summary of the neural network method.

Description

Applications Any type of accumulators.
Dynamic and static accumulator applications.
Working principle Black-box type.
Advantages No in-depth knowledge of the system is required for its development.
Disadvantages The architecture of the neural network is obtained empirically. A large
amount of data is necessary to determine the weights of the network.

In addition, in the paper “Estimation of Lithium Battery SOC Based on Fuzzy Un-
scented Kalman Filter Algorithm” developed by Zhang, XZ et al. [28], the simulation
results show that under the condition of unknown noise, the Fuzzy Unscented Kalman
Filter (FUKF) algorithm has faster convergence speed and higher estimation accuracy than
the UKF algorithm, which effectively solves the deficiency of the UKF algorithm. Mean-
while, in the paper “prediction of SOC in a Lithium Ion battery cell using fuzzy inference
system and fuzzy identification” developed by M. kim et al. [29], an adaptive combination
of EKF and the conventional Coulomb counting method is proposed. Finally, the proposed
adaptive method shows within 2% error with 70% decreased complexity compared to EKF.
On the other hand, genetic algorithms are used for optimization in the operation of the
different variables used to model a system [30]; in the work “A hybrid genetic algorithm for
the electric vehicle routing problem with time windows” developed by Liu, QX et al., with
results by the comparison of the simulated annealing (SA) algorithm and genetic algorithm
(GA), the proposed approach indicates that it can provide better solutions in a short time

With the above-mentioned, the best method to find the state of charge of a nickel metal
hydride battery cell is the implementation of artificial neural networks. Consequently, the
use of neural networks proposed in this work to estimate the state of charge in NiMH
battery cells for hybrid vehicles becomes essential to obtain a better management given
that these batteries enter a recycling process when the vehicle reaches the end of its useful
life, but even these cells retain several properties for energy storage, being used in various
power generation systems in remote locations, but need a low-cost storage system to reduce
operating cost.

Finally, the trained model needs to be validated by statistical methods, shown in
Figure 1: the root means square error (RMSE), absolute percentage error (MAPE), mean
square Error (MSE) and correlation coefficient (R2).

RMSE

MAPE

Performance

evaluation

R2

MSE

Figure 1. Methods for performance analysis.

In a review of the recent literature [31] on various factors such as advances in batteries,
battery modeling, battery management systems, battery thermal management, SOC, SOH
and charge/discharge characteristics in EV applications, no studies on the type of basis
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radial neural networks applied to NiMH batteries. It is worth mentioning that in other
studies [32], the authors analyze the SOC of NiMH and lithium batteries with the type of
neural network Adaptive Gaussian Process Regression with Radial Bias Filter (RBF-GPR),
and kernel provided the greatest performance with <2% estimation error, but in this case,
the batteries analyzed are not for use in hybrid or electric vehicles. Additionally, in [33], the
type of neural network GRU RNN (recurrent neural network with gated recurrent unit) is
implemented where a SOC estimation model of a lithium-ion (Li-Ion) battery for vehicles
was obtained. Using very precise and robust electrical networks, demonstrating that with
a limited amount of data, nonlinear models can be represented in a very good way, with
which they demonstrated that recurrent networks could achieve a higher accuracy and
overcome the problem of long-term dependencies in the RNN.

Finally, [34] used hybrid long—short-term memory (LSTM) neural networks to predict
multistep electric vehicle charging station occupancy, for which the results show that the
proposed method has a high degree of accuracy. This gives greater support to the research
of [35] where the authors used the feed-forward backpropagation regressive network,
whose approach is calculated using a virtual function to input the model output variable.
In this work, various neural network architectures and 10 training scenarios were used to
predict the SOC, voltage, current, speed and mileage but only for lithium-ion batteries.

The main contribution of this research focuses on implementing a feed-forward back-
propagation and radial basis neural network model using measured input variables, with
which a more realistic representation of the system is obtained. With everything mentioned
above, no studies have been found that compare different architectures of the feed-forward
backpropagation network and compare them with the type of radial basis network apply-
ing to NiMH batteries of hybrid vehicles, where the input variables used to train the model
are the voltage and current, so that the temperature variable is subsequently implemented
and the performance of the developed model is analyzed to reach the conclusion of which
is the type of network that best models the SOC for this type of battery, opening the study
of the second life for this type of battery that is being replaced by Li-Ion ones, mainly to be
implemented in other applications.

2. Methodological Development
2.1. Development of the Mathematical Model of the NiMH Battery for the Proposed Model

This section indicates the proposed model for the study of charge states.

The electrical-mathematical model aims to predict the behavior in the different oper-
ating states; a first-order RC circuit is proposed which represents the activity of a cell or
battery bank, this model consists of: a source, 2 resistors and a capacitor. Power supply
(Vbatt) the voltage existing between the terminals, which is the voltage that deliver the bat-
tery, resistance models the effects of battery internal resistance (Ri), resistance and capacitor
(Rdy-Cdy) represent the dynamic behavior of the battery cell, battery current (Ibatt) and
the battery capacity (Cbatt), in Figure 2 the circuit is presented as just described.

Before applying the model, the following parameters must be considered: for the
analysis of the estimation, the performance of the battery in charging and discharging will
be 100% or 1 for calculation purposes.

Depending on the aforementioned electrical circuit, the operating equations [36,37]
that are presented in (1)—(3) can be obtained.

1

X = _Ccapc 1)

X2 1

x:_RdyxCdy_@c

@

y=x1+x+RixC 3)
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"1

where x7 and x; represent the voltage across the capacitors Cp,y; and Cyy of the circuit, “y
is the voltage across the terminals, while C is the current that crosses the circuit.
The matrix form can be expressed in Equation (4).

. 1
Chatt 0 0 Chatt G :
2 =0 -1 Cﬂ + ftt [lcell Ccell} 4)
Cdy Rdy*Cdy dy _Cidy
+
+—0 — AN —e— AN )
Vsoc
{ Ri Rdy
+
Chatt tatt (7| ) (") Vbatt =
</ T

Figure 2. RC circuit used to develop the model.

2.2. Data Collection for the State of Charge of a Nickel Metal Hydride Battery Cell

The technical specification of the battery cell used for this work is provided in
Table 4 [38].

Table 4. Technical specification of battery cell.

Nominal voltage 108V
Nominal capacity 3.8 Ah
Anode material (+) NiOH
Cathode material (—) Metal hydride
Electrolyte 30% potassium hydroxide

When the discharge rate C is not available in the manufacturer’s data sheet, it is
necessary to calculate it with Equations (5) and (6) [39]:

Consumption power — 60W
Voltage 12V

Consumption current = =5A (5)

Nominal capacity = 3.8Ah

; 55 = 076C (6)

Cmte -

where

I: consumption current;

Cp: consumption power;

V: voltage;

Ah: nominal capacity.

From the above, the rate C of the battery is 0.76 C.

The following method was used to obtain the necessary data, train the artificial neural
network and estimate the state of charge of a battery cell.

Current-based estimation, also known as Coulomb ampere-hour meter. The met-
hod consists of integrating the current supplied and absorbed from the battery as in
Equation (7) [40].
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SOC(t) = SOCo — %/; 1(t)-dt @)

where
SOCo: initial state of charge;
n: battery performance;
I(t): battery current in discharging process;
to: starting time;
SOC: state of charge;
C: battery capacity or voltage in discharge process.
The initial state of charge is calculated with Equation (4) [40]:

C(t) x SOC(t —1)

SOCo(t) = 1)

®)

where
SOC: percentage of state of charge.
The percentage of the state of charge is estimated using Equation (9):

__Cw 0
SOC(t) = Clmitan) 100 % )

where
C(initial): the initial voltage of the battery when it is 100% charged.
On the other hand, the battery performance is calculated with Equation (10) [40]:

(B ) o (EalVad) o,
(M) X Ac X t¢

m

n= (10)

where

Ac: load amperage (A);

Td: discharge time (min);

Vd: discharge voltage (V);

Id: discharge current (A);

Tc: charging time (min);

m: the amount of data collected during the download time.

Once we have determined all the variables that we need to measure from Equation (7),
we can determine the state of charge of the nickel metal hydride battery cell, which is
represented in Equation (11).

f(v,I) = SOC (11)

The network structure in this work can be schematically represented as in Figure 3.
The network contains 2 inputs and 1 output, and to obtain the number of neurons in the
hidden layer, we use Equation (12), where n is the number of inputs to the network (in this
case, 2 inputs), giving us 5 neurons in the hidden layer.

#neuronas =2 xn+1 (12)

where
n = number of inputs
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Dischargm

ANN s0C

[ Discharge current }—J

Figure 3. Inputs and outputs of the artificial neural network of the first model.

However, through the analysis carried out in the introduction and in the work [13]
developed by V. Talele et al., they determine that the temperature in the battery cell directly
influences the state of charge, so it is imperative to add this input variable to train a second
model with artificial neural networks. The first one is represented in Equation (11), while
the second one is presented in Equation (13):

f(V,1,temp) — SOC (13)

As mentioned above, the structure of the artificial neural network for the second
method can be represented in Figure 4. Since this artificial neural network has 3 input
variables and one output variable, it will result in 7 neurons in the hidden layer.

Discharge voltage

\ 4

SOC

Discharge current » ANN

Discharge
temperature

Figure 4. Inputs and outputs of the artificial neural network of the second model.

where

e  Voltage in the discharge process (V): The electrical potential difference between the
cell terminals while discharging. The unit used for the respective operations was
volts [V]. These data were measured with the help of an AUTEL model MP408 oscillo-
scope, which manufacturer is AUTEL, the equipment was obtained by an authorized
distributor “IngeAuto” in Ambato, Ecuador.

The MaxiSCOPE MP408 is a 4-channel digital oscilloscope. It measures and tests all
modern electronic components and circuits. Compatible with MaxiSYS tablets MS906BT
and up, and the MaxiIM IM608 tablet, the MP408 displays high-resolution waveforms.

e  Current in the discharge process (I): The number of electrons moving per second. The
unit used for the respective operations was amperes [A]. These data were measured
with the help of an AUTEL model SA253 clamp meter, which manufacturer is AUTEL,
the equipment was obtained by an authorized distributor "IngeAuto” in Ambato,
Ecuador.

The current clamp measures a maximum current of 65 A, with a frequency of up to
20 KHz. It works with jaws that open to allow clamping around an electrical conductor.
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After linking it with a multimeter or an oscilloscope, the zero-adjustment knob on the
clamp is pushed down until the multimeter or oscilloscope reads zero.

o  Cell temperature (temp): This is a physical magnitude that indicates the internal
energy of a body; the unit used to represent this magnitude was degrees Celsius (°C).
This magnitude was measured in the section where the temperature sensors are placed,
using an automotive pyrometer model ADD8850, which manufacturer is FLUKE, the
equipment was obtained by an authorized distributor “dominion™ in Quito, Ecuador.

The thermometer measures the electromagnetic radiation emitted by the body in a
spectral interval that depends on each thermometer. It includes a pilot light beam for better
orientation when taking measurements [41]. In the following Table 5, the characteristics of
the pyrometer are provided with details [41].

Table 5. Pyrometer characteristics.

Measuring range —20°Cab37°C
Spectral resolution 6-14 pm
Precision +1°C
Field of view 12:1
Remark Laser marker < 1 mW

The experiment was carried out on the date of 1 December 2021 in the city of Riobamba,
Ecuador, at an ambient temperature of 20 °C, with a relative humidity of 59%, with an
atmospheric pressure of 0.73 atm [42]. Figure 5 shows the test station used to collect the
different data to be used for the training of the different neural networks. Additionally, the
power used to discharge the cell was 60 W, the cell charging amperage was 3 A and it is
worth mentioning that all the data obtained were taken every 30 s. The reason for choosing
the value of 3 A as the charging current is because battery manufacturers recommend
charging the battery cells at a C rate lower than the one at which they were discharged. All
the above is carried out to improve the state of cell health. With the above, the loading and
unloading times were approximately 60 min and 40 min, respectively, resulting in 80 pieces
of data for each variable in the unloading process; in other words, about 240 and 320 values
were used for training the different artificial neural networks.

It is important to clarify that to generate discharge power, it is necessary to use ele-
ments that represent the actual discharge power of the vehicle, because each manufacturer
may use a different type of battery compared to other manufacturers.

Once the data set was obtained, we randomly divided it into two parts: 70% was
run for artificial neural network (ANN) training in the Neural Networks Toolbox module
of the MATLAB R2020b mathematical software—the <<nntool>> code is written in the
software command window to enter the toolbox—and 30% was run for the validation and
evaluation phases, all this with the purpose of obtaining a representative subset of the data
distribution.

However, the data obtained for the training of the neural networks are presented in
Figures 6 and 7. In the discharge process, the gradient in the temperature increase is within
the normal operating parameters of a nickel metal hydride cell, which determines that the
temperature should not exceed 30 °C [11].

2.3. Neural Model Selection

The steps to create an artificial neural network that estimates the SOC of an NiMH cell
is primarily data collection, then architecture selection, to continue with network training,
with the intention of reaching the validation and testing stage, and finally the run.

According to ref. [43], in the field for battery cell state of charge analysis, the most
used network types for artificial neural networks are:

e  Multilayer feed-forward backpropagation;
e  Radial basis (exact fit).
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As these two types of neural networks are classified according to their training method,
in the error correction learning group, it is necessary to develop a method with a type of
artificial neural network with hybrid training. Radial basis (exact fit) fits this requirement.
At the same time, the function of activation, learning and validation in artificial neural
networks will be analyzed in this paper.

—

Clamp meter

Pyrometer ADD8850 Maxi sSbE MP408

7’ v , —
74 2 ‘ . Y

4

Figure 5. Test station for data acquisition.

12 27

|

—
S

Jrom——
B
&

25 Jue—
S -
== (o]
O e
2 24
> =
© ° Z
by 23 g
2P 4 8
© 2 9
"'8 = Voltage &

o5}

é 2 ——Temperature 21

[N]
o

0,
100 87 86 84 84 83 82 82 82 81 81 80 80 80 79 79 79 78 78 77 76 67 57 46 34 20 5

SOC [%]

Figure 6. Voltage and temperature in the discharge process.
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Figure 7. Current and temperature in the discharge process.

2.3.1. Multilayer Feed-Forward Backpropagation (FBNN)

The basic structure of the multilayer feed-forward neural network usually consists of
3 layers: the input layer, hidden layer and output layer. At each input neuron, it acquires
data from another neuron, passes through the hidden layer and finally goes to the output
layer.

The weights before training have no relevant information; they only acquire it after
training. In Equation (14), the above-mentioned is represented:

X =Y, (wiaiiby) (14)

As in any machine-learning problem, overfitting of the training data is not desired.
This will occur if you must train for many epochs; an epoch is a cycle of the algorithm
where the network evaluates all available samples once; performing too many epochs
means overfitting.

The training and validation tests of the feed-forward backpropagation multilayer
neural network structure defined in Figure 7, with three inputs: voltage, current and
temperature in the discharge process together and an output of the neural network, which
is the SOC, are performed randomly using different architectures and modifying the
hidden-level neurons, the stimulation activities and the training algorithms of the models.
Specifically, in Figure 8, the input layer has 3 neurons, the hidden layer has 7 neurons and
the output layer has 1 neuron.

View Train Simulate Adapt Reinitialize Weights View/Edit Weights

Hidden Layer Output Layer

Input i

Figure 8. Structure of the feed-forward backpropagation neural network of the second method with
2 layers.

A fundamental stage in an artificial neural network is the training stage; this stage
is based on varying the weights of the connections in an orderly manner acquiring an
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available array. The network employs a capturing process, where an addition is indicated
along the weights of the network that are considered according to the desired output,
thus obtaining the required output. Continuing with validation, it is a critical process
that involves the evaluation of the functionality and accuracy of the system with the
identification and mitigation of bias in the training data. Data privacy and security using
appropriate validated and documented tools and techniques. Likewise, the test phase is
where each of the trained models is provided with the test data to verify which of them
gives the best prediction [44]. The final stage is the use of the neural network whose
functionality will be represented with the correlation coefficient shown in Figure 9.
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Figure 9. Feed-forward backpropagation training phase.

2.3.2. Radial Basis Exact Fit (RBNN)

A radial-based neural network is based on the calculation of the Euclidean dis-
tance given an input vector x, with respect to a reference or center c, ref. [45] defined in
Equation (15):

f(x) = ([lx = cill) (15)

A radial basis function 6(x) corresponds to each neuron in the input layer and an
output weight (w;). The output weight feeds an output neuron, which adds to the inputs,
and an output is obtained as a response, expressed in the following Equation (16):

F(x) = Y0 wib(|lx —cif) (16)

RBNNSs have a rigid three-layer structure: input layer, hidden layer and output layer,
which differs from other networks such as backpropagation.

Learning is a fundamental part of an artificial neural network, and this type of network
is no exception. This process consists of the determination of centers, deviations and
weights from the hidden layer to the output layer. Since the input layer performs several
tasks, the process is optimized by separating the parameters of the hidden layer and the
output layer.
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The training method to be used in this work for this type of artificial neural network
will be the hybrid one, in which the number of neurons and weights in the hidden layer
and the thresholds of the output layer are automatically calculated by the software, as can
be seen in Figure 10.

o “reate | C -

View Train Simulate Adapt Reinitialize Weights View/Edit Weights J Network Data

Training Data

Inputs

Targets

Init Input Delay States
Init Layer Delay States

(zeros)
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Training Results | RE.1

Outputs RB_1_outputs

Enr RB_1_errors Network Properties
Final Input Delay States RB_1_inputStates Network Type: Radial basis (exact fit) N
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: : : Input data: ENTRENAMIENTO_DATA ~
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Spread constant: 1.0
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s e

Train Network | @ Help ¢ Create @ Close

[ View ¥ Restore Defaults

Figure 10. Radial basis hybrid training phase.

The only value that is modified is the spread constant, which determines the activation
within the data cluster. If the propagation value is high, the data points will be dispersed far
from the center, leading to low efficiency. Therefore, from several from [46], it is concluded
that the best value to train the network is 1.

2.4. Selection of the Set of Training Techniques

An important stage for a neural network is the training process, which consists of
modifying the connection bias weights in an orderly fashion using a learning method that
best fits the system to be modeled. The input is presented together with the desired output
so that the synaptic weights are adjusted for each neuron to obtain the desired output.
For each neural model, proposed FBNN and RBNN several training functions, number of
hidden layers, number of neurons in the hidden layer and transfer function for activation
were selected and tested. Once the desired level is reached, the training is stopped, and the
network obtained with the different features mentioned above is used.

There are many training functions, such as batch gradient descent (TRAINGDM),
variable-learning-rate backpropagation (TRAINGDX), the objective of any training function
is to minimize the global average error, RMS and R2.

All techniques used for training must continuously define the problem, preserving the
possibility of network propagation, admitting errors and reducing time and resources used
in the training stage, like Figure 11.
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Figure 11. Standard neural structure.

2.5. Evaluation Criteria for Model Performance

To verify the performance of the models, general statistical techniques such as the
error of the square root of the mean RMSE, MAPE, MSE and R? are used with the real
data and the output of the trained neural networks. For this reason, the test data set is
considered as input. The expressions used to express the different statistical references
used are represented below.

The error in the training process is called RMSE and is defined in Equation (17):

n1/2
RMSE = ((1/p) L} |t — o [*) (17)
In addition, R? Equation (18), MAPE Equation (19) and MSE Equation (20) are
defined as: v )
R2—1_ ( j (fj*"i)z > (18)
¥ (o))
o—t
MAPE = 5 x 100 (19)
where
- t=target value;
- o=output value.
Mean square error:
1 - 2
MSE = ;2?:1()(1' -Y;) (20)

where

- Y;: ith observedred valued;
- Y;: the corresponding predicted value for Y.

The input layers use analog values in the range that was measured, but the neural
network output values are in the range of (0, 1). The collected data are the representative
information of the problem or system to be modeled. These values should present facilities
to meet the implicit goals when applying artificial intelligence techniques to model the
state of charge of battery cells for hybrid vehicles. For this reason, the performance of the
model must be validated using statistical measures, such as those mentioned above.
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3. Results and Discussion

In Figure 4, you can see the process in the data collection of voltage, intensity and
temperature, which were used to train, validate and obtain the finished neural network.
The results obtained are detailed below.

3.1. Characteristics of the Feed-Forward Backpropagation Multilayer Network

The training ends when the validation error increases consecutively for six iterations.
From Figure 12, it is observed that the final mean square error is small. Also, the error
of the test set and the error of the validation set present similar characteristics. Addi-
tionally, no significant overfitting has occurred in epoch 3211, where the best validation
performance occurs.

Best Validation Performance is 9.2271 x 107° at epoch 3211
10—3 L

—— Train

Validation

— Test

i - Best

107°¢ A . . . ) . \
0 500 1000 1500 2000 2500 3000 3500

Figure 12. Best validation performance in terms of MSE.

Figure 13 indicates how the gradient varied its value according to the iterations carried
out to find the minimum of the function, whose value is 0.0064, with which the error will be
reduced when finding its objective value. On the other hand, the learning rate has a value
of 0.4484 that indicates the size of the step or how abrupt are the changes in the weights in
each iteration while moving towards a minimum of a loss function. Lastly, data validation
was only performed up to epoch 500 to avoid overfitting the neural network.

In the histogram provided in Figure 14, the highest concentration of error is the smallest
data range that was obtained from all the errors between the FBNN with three inputs, two
hidden layers and seven neurons in that layer, and the Coulomb method, ampere-hour
meter. This parameter is another indicator that demonstrates the good performance of this
type of this neural network architecture to model nonlinear systems.
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Gradient = 0.0064046, at epoch 3711
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Figure 13. Training state plot comprises gradient, scalar p, and validation check.
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Figure 14. Difference between the actual and the target output.

Figure 15 of the FBNN network indicates a correlation coefficient very close to one,
demonstrating the great performance they managed to have in predicting the SOC of the
NiMH cell.
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Figure 15. Regression relation of the FBNN network.

The mathematical functions for ANN in terms of weights and bias are obtained as
presented in Figure 16 and Equation (21) [47].

% = f2 (W2f1 (Wlp + bl) + bz) (21)
where
- W:weight;
- b: bias;
- p:input.
Inputs First layer Sccond layer
r N7 A\ ‘ A
ny ay  wry, m an
X — ! 2
lb'l lb21
1 1
iy ai ) a
21 L
lb‘z lb% i
1 1
nlsl alsl nzsz a‘.‘lsz
2! LS
W27 gl
lblsl l blsl
1 1
\/ \ A \ P
al=f1! (‘V’lp+bl) a2=f2 (\Vlal+b2)

Figure 16. Feed-forward in a three-layer network. The superscripts represent the layer number.

The matrices are presented below with the respective biases and weights according to
the corresponding layer:
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Weight to layer 1 from input 1:

T —1.2051
1.72
—2.40
1.3402
2.0927
1.506
| —2.097

Weight to layer:

0.0088
—0.05116
0.20 0.2334
1.8892
1.6358

0.1724

1.8188 ]
—1.8703

—1.264
—0.1233

1.064
—1.657

[—0.1844 —0.0056 —0.4069 0.2241 0.1316 0.9245 0.053 ]

Bias to layer 1:

Bias to layer 2:

3.1245 T
—1.899
1.1277
—0.0685
0.9554
1.6657
| —2.6725

[—0.6058]

The characteristics of the feed-forward backpropagation network is presented in

Table 6.

Table 6. Summary neural network method.

FBNN Value
Neurons input layer 2-3
Neurons hidden layer 5/20/50/100-7/20/50/100
Neurons output layer 1

Transfer function Tansig
Learning function LearnGDM
Training function GDM/GDX
Training data 240-320
Test data 3648
Iterations 500
Training algorithms GDM/GDX
Epoch Training 500
Number of layers 2-3
Performance function MSE

3.2. Characteristics of Radial Basis Exact Fit Network (RBNN)

The only parameter that can be distorted for the training of this neural network is the
propagation constant, whose value selected by bibliography is one; the selection of this
value gives very high-performance values as can be seen in Table 6.

When using the Matlab toolbox for neural networks, it was observed that the models
developed using the networks, such as the multilayer feed-forward backpropagation and
the radial basis (exact fit) to estimate the state of charge of nickel metal hydride battery cells
for hybrid vehicles, when using different inputs to model the proposed system, have a very
high performance. In addition, Figure 17 indicates the regression relation of the network.
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Figure 17. Regression relation of the RBNN network.

Performance Comparison of FBNN and RBNN

The training result of the multilayer feed-forward backpropagation neural network
using GDM and GDX algorithms with three input variables, including temperature, and
one output variable is presented. Also, the number of neurons in the hidden layer was
increased from 7 to 100. Additionally, a hidden layer was added applying all the variations
mentioned above, whose training, validation and analysis are described in Table 7. These
data are used to determine which type of configuration is the most optimal for modeling
the proposed system.

Table 7. Validation of the model (FBNN) with temperature.

Method Structure Training Validation Test Output RMSE  MAPE R? MSE  Simulation
(Two (Two (Two (Two [%] Time [s]
Layers) Layers) Layers) Layers)
GDM 3-7-1-1 0.9967 0.99869 0.98214 0.9944 0.0225 2.5404 0.9895  0.0005 0.46
GDM 3-20-1-1 0.99231 0.9954 0.99913 0.99408  0.0218 3.0122 0.9891  0.0004 0.47
GDM 3-50-1-1 0.9860 0.8238 0.9936 0.9883 0.0317 1.802 0.9775  0.0010 0.49
GDM 3-100-1-1 0.9547 0.9698 0.9453 0.9577 0.0449 3.1871 0.9189  0.0065 0.54
GDX 3-7-1-1 0.9998 0.99979 0.9156 0.99732  0.0154 1.0841 0.9945  0.0002 0.45
GDX 3-20-1-1 0.99549 0.99871 0.99958 0.9968 0.0166 1.0906 0.9937  0.0002 0.46
GDX 3-50-1-1 0.9720 0.9953 0.9934 0.9754 0.0527 1.128 0.9547  0.0027 0.48
GDX 3-100-1-1 0.97 0.9878 0.9860 0.96951  0.0546 2.2416 0.9423  0.0029 0.52
Method Structure Training Validation Test Output RMSE  MAPE R? MSE  Simulation
(Three (Three (Three (Three [%] Time [s]
Layers) Layers) Layers) Layers)
GDM 3-7-1-1-1 0.98232 0.9899 0.99784 0.98645  0.9881 5.2704 0.9826  0.0008 0.48
GDM 3-20-1-1-1 0.98521 0.99713 0.99673 0.9896 0.0290 3.5956 0.9806  0.0008 0.49
GDM 3-50-1-1-1 0.9754 0.9218 0.9914 0.9743 0.0494 9.4703 0.9509  0.0024 0.52
GDM 3-100-1-1-1 0.966 0.9848 0.9688 0.96755  0.1257 13.61 0.94014 0.01580 0.54
GDX 3-7-1-1-1 0.99892 0.87623 0.99921 0.99576  0.0188 0.0688 0.9918  0.0003 0.46
GDX 3-20-1-1-1 0.99613 0.99979 0.99952 0.99729  0.0290 0.2332 0.9947  0.0002 0.49
GDX 3-50-1-1-1 0.9858 0.8680 0.9924 0.9838 0.0370 0.7934 0.9686  0.0013 0.53
GDX 3-100-1-1-1 0.9841 0.9907 0.9824 0.9846 0.0359 1.2021 0.9703  0.0012 0.55

The results of the radial basis network (exact fit), which is used to make a comparison
between the types of networks used, to model the proposed system and find which type of
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network and configuration has the best performance at the time of estimating the state of
charge of the NiMH battery cells, are established in Table 7.

The final comparison of this work is also analyzed by using statistical techniques such
as RMSE, MAPE, R2 and MSE. These are shown in Table 8. Where a low RMSE value was
found, this means a low error exists between the data set calculated with the Coulomb
ampere-hour meter method and the method developed with ANN. The MAPE indicates
the size of the error between the methods being compared, indicating that both methods
developed with ANN have an error of approximately 1.08% for the FBNN network and
1.10% for the RBNN network compared to the traditional method, whereas the R2 in both
methods developed with ANN is very close to one, which expresses that the relationship
between the values calculated in the traditional way and with ANN are highly correlated.
Finally, a low value of MSE indicates that the error between the traditional method and the
method developed with ANN is very low.

Table 8. Comparison of FBNN and RBNN model performance with temperature.

Type Method Structure RMSE MAPE [%] R? MSE
FBNN GDX 3-7-1-1 0.01543 1.084147 0.994577 0.0002381
RBNN c=1 1-80-1-1 0.0111 1.100115 0.997195 0.000124

The comparison of the results achieved by the two trained networks is shown in
Figure 18.

100
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0
0 5 10 15 20 25 30 35 40

Time [min]
Act outp data w/ temp BPNN outp w/ temp RBNN outp w/ temp

Figure 18. FBNN and RBNN results with temperature.

The radial basis (exact fit) neural network, being a hybrid training network, auto-
matically determines the training function, the adaptation of the learning function, the
performance function, the number of hidden layers, the number of neurons in the hidden
layer and the transfer function. So, it indicates, that the software will develop all the
training practically, taking away the protagonist role of the developer of the method.

In this case, it is considered necessary to develop a model using the same variations
mentioned above, but with the great difference that this model will have only two input
parameters (V, I) and one output variable (SOC). This change in the input parameters will
allow us to conclude what variation exists in the estimation of the state, by not considering
the discharge temperature of the battery cell; the results can be observed in the Tables 9
and 10, in addition Figure 19 shows the results.
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Table 9. Model validation (FBNN) without temperature.
Method Structure Training Validation  Test Output RMSE  MAPE R? MSE  Simulation
(Two (Two (Two (Two [%] Time [s]
Layers) Layers) Layers) Layers)
GDM 2-5-1-1 0.99507 0.87284 0.99681 0.99309 0.0228 1.0987  0.9882  0.0005 0.44
GDM 2-20-1-1 0.98348 0.99386 0.99669 0.9835 0.0375 0.93 0.9678  0.0014 0.46
GDM 2-50-1-1 0.85041 0.9562 0.9633 0.8597 0.0348 0.8807  0.9731  0.0012 0.51
GDM 2-100-1-1 0.91944 0.86181 0.76445 0.89773 0.1205 10.5666  0.8065  0.0145 0.53
GDX 2-5-1-1 0.99964 0.99932 0.94449 0.99706 0.0161 0.9188  0.9939  0.0002 0.43
GDX 2-20-1-1 0.99604 0.998 0.99922 0.99605 0.0143 0.6995  0.9952  0.0002 0.46
GDX 2-50-1-1 0.9972 0.98502 0.99115 0.99432 0.0223 0.9455  0.9888  0.0004 0.51
GDX 2-100-1-1 0.9818 0.9587 0.9810 0.9743 0.0449 9.9170  0.9545  0.0020 0.54
Method Structure Training Validation  Test Output RMSE MAPE R? MSE  Simulation
(Three (Three (Three (Three [%] Time [s]
Layers) Layers) Layers) Layers)
GDM 2-5-1-1-1 0.97995 0.98521 0.92245 0.97263 0.0478 9.2449  0.9486  0.0022 0.43
GDM 2-20-1-1-1 0.98267 0.99399 0.97755 0.98399 0.0376 0.6453  0.9692  0.0014 0.45
GDM 2-50-1-1-1 0.9639 0.99092 0.9847 0.97281 0.0615 3.1376  0.9491  0.0037 0.50
GDM 2-100-1-1-1 0.95593 0.98829 0.8557 0.9649 0.0546 2.6622  0.9326  0.0029 0.55
GDX 2-5-1-1-1 0.99575 0.99965 0.99958 0.99704 0.0161 0.9955  0.9940  0.0002 0.45
GDX 2-20-1-1-1 0.99591 0.99936 0.99911 0.99728 0.0145 0.7528  0.9952  0.0002 0.47
GDX 2-50-1-1-1 0.9721 0.9765 0.9239 0.9669 0.0585 0.1928  0.9358  0.0034 0.51
GDX 2-100-1-1-1 0.9732 0.9053 0.9872 0.9542 0.0640 24428 09136  0.0041 0.56
Table 10. Performance comparison of the FBNN and RBNN model without temperature.
Type Method Structure RMSE MAPE [%] R? MSE
FBNN GDX 2-5-1-1 0.016188 0.91880714 0.99398 0.0002620
RBNN c=1 1-80-1-1 0.011196 1.09924788 0.997163 0.0001253
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Figure 19. FBNN and RBNN results without temperature.

RBNN outp w/o temp

Figure 20 shows the R2 of the different methods developed with artificial intelligence
techniques. The value of R2 determines the performance of the developed method; it is
understood that the closer the value is to one, the better the performance. This analysis
helps to determine that the RBNN with temperature network is the one that best predicts
the SOC of the NiMH battery, which allows different analyses to be carried out, which are
explained in Table 11.
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Figure 20. Performance comparison of the developed methods.

Table 11. Correlation coefficient (R2).

Experiment FBNN w/o Temp  FBNN w/Temp RBNN w/o Temp RBNN w/ Temp

test 1 0.99399 0.99255 0.98320 0.98990
test2 0.98242 0.98761 0.99340 0.99015
test3 0.97425 0.98409 0.98450 0.99490
test 4 0.99305 0.98761 0.97564 0.98906
test5 0.99465 0.99139 0.98912 0.98960
test 6 0.99331 0.98655 0.99036 0.99394
test 7 0.98867 0.99402 0.98536 0.98976
test 8 0.98857 0.99036 0.99020 0.99369
test9 0.98572 0.99321 0.98334 0.99206
test 10 0.97873 0.99414 0.97342 0.99523

The neurons in the first hidden layer of each configuration have been modified to
understand what happens with the new calculations of RMSE, MAPE, MSE, R2 and SOC
estimation. As a result, the R2 in all configurations decreases, implying that the linear
dependence between the method created with artificial neural networks and the Coulomb
counting method is affected. For this reason, in some studies such as [48], it has already
been shown that overtraining a neural network by abruptly increasing the number of
neurons in the hidden layer decreases the performance of the model created with ANN.
The results of the SOC estimation are presented in Figures 21 and 22.

Figure 21 represents the SOC with which the FBNN neural network was trained,
which includes the temperature variable, the best configuration that presents the best R2,
which is selected in Table 6 with an orange box, whose structure is three input neurons,
seven in its first hidden layer, one neuron in its second hidden layer and one neuron in its
output layer. The training method to develop this structure is GDX. On the other hand, two
configurations of the FBNN network have been selected whose R2 is the furthest from one,
in order to better appreciate how the erroneous selection affects the number of neurons.
The second graphed structure is the FBNN network with two layers, 100 neurons in its
first hidden layer and trained with the GDM method. The third graphical structure is the
FBNN network with three layers, 100 neurons in its first hidden layer and trained with the
GDM method.
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Figure 21. SOC comparisons of different FBNN configurations with temperature.
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Figure 22. SOC comparisons of different FBNN configurations without temperature.

Figure 22 represents the SOC with which the FBNN neural network was trained that
does not include the temperature variable, the best configuration that presents the best
R2, which is selected in Table 9 with an orange box, whose structure is two input neurons,
five in its first hidden layer, one neuron in its second hidden layer and one neuron in its
output layer. The training method to develop this structure is GDX. On the other hand,
two configurations of the FBNN network have been selected whose R2 is the furthest
from one, to better appreciate how the erroneous selection affects the number of neurons.
The second graphed structure is the FBNN network with two layers, 100 neurons in its
first hidden layer and trained with the GDM method. The third graphical structure is the
FBNN network with three layers, 100 neurons in its first hidden layer and trained with the
GDX method.

Additionally, several measurements of the discharge process of a NiMH battery cell
for HEV were carried out, using the same variables and experimental conditions that
were used to train the models created with artificial intelligence techniques. With this,
10 data sets were obtained that will be used to develop a more in-depth analysis of the
four models developed that estimate the SOC. In the following Table 11, you can see the
different correlation coefficients obtained from the different simulations carried out with
the respective data obtained from the experimental tests.
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By applying an ANOVA analysis of the different correlation coefficients obtained, after
having carried out a total of 10 simulations for each of the four models developed, see
Figure 23, it can be understood that the lower limit of the RBNN w/ temp model is the only
one that is not within the limits of a developed model, which results in a model that is not
equal to the other three developed models. In Table 10, the mean that best approximates
one can be seen in greater detail, demonstrating that the RBNN w/ temp model is the one
that best adjusted to estimate the SOC of the NIMH cells of the HEVSs.

0.996
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Figure 23. SOC interval graph of the different models developed, 95% confidence interval of the mean.

The discharge power is the same for all the experiments; this is because the efficiency
of neural networks to model nonlinear systems and the implementation of new variables
such as temperature are analyzed. With the above, by implementing the temperature
variable, the neural networks continue to predict the SOC with very high precision, whose
coefficient of determination is 0.99182 with a radial basis exact fit neural network in
Figure 23. However, an analysis was applied with a 95% confidence interval, resulting in
an upper limit of 0.9951 and a lower limit of 0.98152, for greater detail, see Table 12.

Table 12. ANOVA analysis.

Factor N Mean Stand. Dev. CI de 95%
FBNN w/o temp 10 0.98734 0.00700 (0.98400; 0.99067)
FBNN w/ temp 10 0.99015 0.00350 (0.98682; 0.99349)
RBNN w/o temp 10 0.98485 0.00642 (0.98152; 0.98819)
RBNN w/ temp 10 0.991829 0.002413 (0.988491; 0.995167)

The validation of the model developed with neural networks was carried out with
10 data sets. It is important to mention that these validation data should not be the same as
those used to carry out the training. Under this, study the response of the neural network
to data that have not been used during training, which are presented in Figure 23. The
configuration of the neural network with the highest R2 of 0.99182 is the radial base that is
trained considering the temperature variable.

Additionally, if an interval does not contain zero, the corresponding means are signifi-
cantly different, as can be seen in Figure 24.
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Figure 24. Difference of the means for the different methods.

After the analysis of various investigations, it was found that it is possible to develop
a method with meta-learning techniques, capable of predicting the SOC of a Li-ion battery
for electric vehicles. The proposed method [49] is effective when the target battery training
data are insufficient, specifically in the early stages of BMS development. In addition, the
method developed by this author can estimate the SOC of the battery with a small amount
of objective data (96 data points) with a MAPE of 1.0075%, while the RBNN w/ temp
model developed in this work can estimate the SOC of the battery with 80 data points with
a MAPE of 1.084%. While it is true, they are different types of neural network techniques,
but both belong to the machine-learning method.

In the article [50], a method called gated recurrent neural network for online SOC
estimation was developed where the robustness of the model is demonstrated by calculating
the SOC at different temperatures from the one at which it was trained, obtaining an RMSE
in the SOC estimation of less than 2.5% in nickel manganese cobalt (NMC) batteries and
3.5% lower in lithium iron phosphate (LFP) batteries. On the other hand, in this work,
different temperatures were also used for training the RBNN model w/ temp obtaining
an RMSE of 1.11%. While it is true that they are specifically not the same type of neural
network, they belong to the same family of recurrent neural networks.

The results found in [35] indicate that the feed-forward backpropagation neural net-
work can predict not only the SOC of the batteries of HEV and EV vehicles; you can also
predict, with a value of 0.1478 RMSE, variables such as current, voltage, mileage and speed.
For this reason, it opens a gap to implement more variables that allow the state of charge to
be calculated more accurately, coinciding with what is proposed in this work by increasing
the temperature variable as an input parameter to better predict the SOC of the batteries,
obtaining an RMSE of 0.0154. Finally, the aspects mentioned in this paragraph motivate us
to propose research with this type of network and implement variables that continue to
affect the calculation of the SOC of the batteries, such as the percentage of humidity in the
air, the torque and power that the motor must develop to be able to overcome the different
forces that oppose your movement in various scenarios.

4. Conclusions

The current methods proposed to calculate the state of charge of battery cells only in-
clude voltage and current, but due to issues in the complexity of modeling the temperature
variation in the current formulas; this variable is discarded. For this reason, implementing
variables that are difficult to model with traditional mathematical methods, neural net-
works are conducive to representing these systems and adding variables that have not been
previously implemented.
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The temperature is a variable that was incorporated in the study of the state of charge
for this experiment; this variable represents a significant factor in the performance of the
state of charge or discharge of a battery. Its great relevance in this phenomenon means
that implementation is essential. By being able to incorporate this variable in the model
with artificial neural networks, it generates a significant advance in this field. Additionally,
obtaining a determination coefficient so close to one means that this model adjusts very
well to the classical equations used previously that only consider the voltage and current
available to the battery to calculate the state of charge or discharge of the same.

Four models were analyzed with artificial intelligence techniques, the FBNN and
RBNN with two and three input variables and one output variable to evaluate the state of
charge of a NiMH battery cell used in hybrid vehicles. Experimental data were obtained
by using different equipment that measured parameters such as voltage, intensity and
discharge temperature, which were used to train and validate the models.

The four models were able to obtain very satisfactory performances; the FBNN models
of two and three input variables used supervised training, with the GDX training function,
five and seven neurons in the hidden layer, respectively, achieving an optimal training. The
RBNN models of two and three input variables were trained with the hybrid method, and
the propagation constant had a value (c) of 1 and 80 neurons in the hidden layer.

The values for the state of charge estimation obtained by the four methods
(Figures 18 and 19). The results show that the models with two and three RBNN input
variables have higher accuracy (Figure 23), compared to the FBNN model, respectively. The
results of this work show that these models are an effective tool for the study of discharge
systems of NiMH battery cells for hybrid vehicles and allow us to obtain in an optimal way
their state of charge. In summary, the R"2 of the model developed with the FBNN network
that models the temperature variable is 0.99015 with a CI of 95% (0.98682,;0.99349). On
the other hand, the R2 of the RBNN network, which models the SOC phenomenon more
precisely, is 0.99182 with a CI of 95% (0.98849; 0.99516).

The validation of the networks was performed with 15% of the data obtained, which
demonstrates the effectiveness of these methods, which can be used to obtain the state of
charge of NiMH battery cells for hybrid vehicles. In Figure 23, the high values of R2 can be
observed, especially that of the RBNN network trained without the temperature variable
with a value of 0.99182, demonstrating its high predictability of the SOC even with foreign
values with which it was not trained.

Parametric sensitivity is not affected when developing a model without considering
the cell temperature, which implies that artificial neural networks have a high perfor-
mance when modeling nonlinear systems, whose parameters are difficult to measure with
time variation, so it is no longer necessary to estimate them in formulas where they are
not included.

5. Recommendations

Correctly model the input variables that will describe the operation of the plant, and
on which it will depend to obtain the desired output.

Obtain and correctly normalize the data to be used for the training of the artificial
neural network, because the success of the neural network depends largely on the data
used for training.

The first step was to analyze the behavior of artificial intelligence with neural networks;
for this reason, two types of ANN with different architectures, training functions and
neuron activation function were used to verify their behavior. Once satisfactory results
have been obtained, it will be possible to continue working in a more robust way and
consider other parameters such as the flat voltage range at the time of discharge.

The study of NiMH cells from HEV and EV vehicles becomes more important every
day because these batteries have already completed their useful life cycle. For this reason,
new applications emerge, such as the use of the second life of cells to store energy in home
networks, because it is a less demanding system for the cell.
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Nomenclature

Symbol Description

Ah Nominal capacity [Ah]

I Current [A]

Patm Atmospheric pressure [atm]

RH Relative humidity [%]

T Temperature [°C or K]

\% Voltage [V]

Greek Symbol

0 Each neuron in the input layer
Subscripts

c The propagation constant

ij Unit vectors

w/ With

w/o Without

wj Output weight

Abbreviations

ANN Artificial neural network

BMS Battery management system

BPNN Backpropagation neural network

CI Confidence interval

CLTC-P China light-duty vehicle test cycle passenger cars
ECM Equivalent circuit models

EPA Environmental Protection Agency

EVs Electric vehicle

FBNN Feed-forward backpropagation neural network
HEV Hybrid electric vehicle

ICE Internal combustion engine

MAPE Absolute percentage error

Li-ion Lithium-ion battery

MLP Multilayer perceptron

MSE Mean square error

NARXNN Exogenous input neural network model
NiMH Nickel metal hydride

NiOH Nickel oxyhydroxide

NMC Nickel manganese cobalt

R™2 Correlation coefficient

RBNN Radial basis exact fit neural network
RMSE Root means square error

S0C State of charge

SOH State of health

TRAINGDM  Batch gradient descent

TRAINGDX Variable-learning-rate backpropagation
USABC United States Advanced Battery Consortium
WLTC Worldwide Harmonized Light Vehicles Test Procedure
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