

Electronics
an Open Access Journal by MDPI

Impact Factor 2.6
CiteScore 6.1

Section Semiconductor Devices

[mdpi.com/
journal/
electronics](http://mdpi.com/journal/electronics)

Section Information

This section publishes original and significant contributions to the theory and performance of semiconductor devices and related materials, including devices, fabrication process, simulation, quantum devices, hybrid devices, flexible electronic devices, novel semiconductors, semiconductor material, and device physics. Reviews on these subjects are published and Special Issues dealing with specific topics are also published.

Section Editor-in-Chief

Prof. Dr. Ray-Hua Horng

Author Benefits

Open Access

Unlimited and free access for readers

No Copyright Constraints

Retain copyright of your work and free use of your article

Thorough Peer-Review

2024 Impact Factor: 2.6

(*Journal Citation Reports* - Clarivate, 2025)

No Space Constraints, No Extra Space or Color Charges

No restriction on the maximum length of the papers, number of figures or colors

Journal Rank

JCR - Q2 (Engineering, Electrical and Electronic) / CiteScore - Q1 (Electrical and Electronic Engineering)

Coverage by Leading Indexing Services

Scopus, SCIE (Web of Science), CAPlus / SciFinder, Inspec, Ei Compendex and other databases

Rapid Publication

A first decision is provided to authors approximately 16.8 days after submission; acceptance to publication is undertaken in 2.4 days (median values for papers published in this journal in the first half of 2025)

Selected Papers

Short-Circuit Detection and Protection Strategies for GaN E-HEMTs in High-Power Applications: A Review

Authors: Haitz Gezala Rodero, David Garrido Díez, Iosu Aizpuru Larrañaga and Igor Baraia-Etxaburu

Abstract: Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors (E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into high-power applications is limited by critical reliability concerns, particularly regarding their short-circuit (SC) withstand capability and overvoltage (OV) resilience. GaN devices typically exhibit SC withstand times of only a few hundred nanoseconds, needing ultrafast protection circuits, which conventional desaturation (DESAT) methods cannot adequately provide. Furthermore, their high switching transients increase the risk of false activation events. The lack of avalanche capability and the dynamic nature of GaN breakdown voltage exacerbate issues related to OV stress during fault conditions. Although SC-related behaviour in GaN devices has been previously studied, a focused and comprehensive review of protection strategies tailored to GaN technology remains lacking. This paper fills that gap by providing an in-depth analysis of SC and OV failure phenomena, coupled with a critical evaluation of current and next-generation protection schemes suitable for GaN-based high-power converters.

<https://doi.org/10.3390/electronics14142875>

Investigation of Temperature-Dependent Gate Degradation in Normally-Off AlGaN/GaN High-Electron-Mobility Transistor p-GaN

Authors: Jeonghyeok Yoon and Hyungtak Kim

Abstract: The effect of temperature on gate degradation behavior was analyzed in Schottky-type p-GaN gate HEMTs under a positive gate voltage. TDDB measurements were conducted at various temperatures, revealing an accelerated gate failure rate at lower temperatures. A Weibull distribution analysis was employed to predict the 10-year rated gate voltage, showing that the rated voltage at $-10\text{ }^{\circ}\text{C}$ is significantly lower than at $60\text{ }^{\circ}\text{C}$. Furthermore, the derived activation energy of -0.22 eV indicates that gate degradation intensifies in colder environments. Hole accumulation occurring at the p-GaN/AlGaN interface can promote degradation by facilitating electron injection and accelerating defect generation in the presence of strong electric fields. At higher temperatures, hole release mitigates charge accumulation, thereby extending device longevity. These findings highlight the necessity of reliability assessments for p-GaN gate HEMTs suitable for environments with low temperatures, including space and polar environments.

<https://doi.org/10.3390/electronics14091764>

Evaluation of a 1200 V Polarization Super Junction GaN Field-Effect Transistor in Cascode Configuration

Authors: Alireza Sheikhan, E. M. Sankara Narayanan, Hiroji Kawai, Shuichi Yagi and Hironobu Narui

Abstract: GaN HEMTs based on polarization super junction (PSJ) technology offer significant improvements in efficiency and power density over conventional silicon (Si) devices due to their excellent material characteristics, which enable fast switching edges and lower specific on-resistance. However, due to the presence of an uninterrupted channel between drain and source at zero gate bias, these devices have normally-on characteristics. In this paper, the performance of a 1200 V GaN FET utilizing PSJ technology in cascode configuration is reported. The device working principle, characteristics, and switching behavior are experimentally demonstrated. The results show that cascaded GaN FETs utilizing the PSJ concept are highly promising for power device applications.

<https://doi.org/10.3390/electronics14030624>

Investigation of Source/Drain Height Variation and Its Impacts on FinFET and GAA Nanosheet FET

Authors: Mingyu Ma, Cong Li, Jianghao Ma, Wangjun Yang, Haokun Li, Hailong You and M. Jamal Deen

Abstract: As semiconductor technology and process nodes advance, three-dimensional devices like FinFET and NSFET are increasingly becoming the primary choice, replacing planar MOSFETs. However, the complex manufacturing processes and high process sensitivity of three-dimensional devices at advanced process nodes inevitably cause significant deviations from the ideal structure during actual fabrication, leading to notable changes in their electrical characteristics. This paper investigates the impact of source/drain region height fluctuations caused by etching and epitaxial growth variations on the electrical characteristics of FinFET and NSFET devices, as well as their related circuits. The electrical characteristics when height variations occur in single and multiple electrodes indicate that, although NSFET and FinFET generally exhibit similar properties such as a decrease in the ON-state current when the source/drain height is reduced, the independent nature of the nanosheets in NSFET and the unidirectional conduction of Schottky contact resistance cause significant differences in their electrical characteristics. Additionally, the related circuit-level simulations show that height fluctuations in the source/drain regions of devices can significantly impact circuit characteristics, including voltage and delay, and in severe cases, they may even lead to circuit failure.

<https://doi.org/10.3390/electronics14061091>

Invitation to Submit

Feature Papers in Semiconductor Devices

Guest Editors: Dr. Frédérique Ducroquet, Prof. Dr. Yi Gu, Prof. Dr. Jae-Hyung Jang, Prof. Dr. Tao Wang and Dr. Hongtao Li
Deadline: 31 December 2025

High-Performance Gas Sensors: Materials, Technologies and Applications

Guest Editor: Dr. Bo Zhang
Deadline: 31 December 2025

Emerging Trends in Ultra-Stable Semiconductor Lasers

Guest Editors: Dr. Tiantian Shi, Dr. Wei Zhuang and Dr. Zheyi Ge
Deadline: 31 January 2026

Radiation Effects of Advanced Electronic Devices and Circuits, 3rd Edition

Guest Editors: Prof. Dr. Chang Cai, Dr. Yaqing Chi and Dr. Li Cai
Deadline: 15 February 2026

CMOS Devices: Design, Applications, and Future Prospects

Guest Editors: Dr. Min-Woo Kwon and Dr. Myung-Hyun Baek
Deadline: 15 February 2026

Special Issue Reprints

Wide-Bandgap Device Application: Devices, Circuits, and Drivers

MDPI is a member of

The Association of
Learned & Professional
Society Publishers

Society
for Scholarly
Publishing

Editorial Office

electronics@mdpi.com

MDPI

Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
mdpi.com

