LASER-DRIVEN ION ACCELERATION FROM CRYOGENIC LOW-Z JETS
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Particle-in-cell (PIC) simulations have identified more favorable
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to 1PW using cryogenic low-Z jets.
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High intensity lasers allow us to explore the phase

space of hydrogen plasmas
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Cryogenic jets can be designed for experimental needs

Cylindrical Planar Droplets

- The density and flexibility of the cryogenic jets
(e.g. H2, 30ncat 800nm) is ideal for studying different acceleration
mechanisms

Transition to Enhanced Sheath Field (ESF) acceleration
from near critical density targets and 1 PW laser
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- TNSA is enhanced if the target becomes relativistically transparent
near the peak of the laser pulse

- Two-fold increase in proton cut-off energy observed in 2D OSIRIS
simulations

ryogenic jets address many challenges of laser driven
ion acceleration
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Proton beam is characterized using Thomson Parabolas

and Radiochromic Film (RCF) Stacks

Cryogenic low-Z jet
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Preliminary results of pure proton/deuteron acceleration

using the Texas Petawatt laser

Protons deflected to and focused
to form azimuthal bands
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D PIC simulations accurately predict ion energies
when picosecond pre-pulse is included
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Pre-pulse can induce a significant pre-expansion before main pulse
interacts with the target and enter into a different regimes for
proton acceleration

Critical to accurately model the pre-pulse in high intensity
interactions

lon acceleration from planar jets and 150 TW laser is
comparable to TNSA from metallic foils

Magnetic fields observed to deflect proton beam
characterized and interpreted using self-generated
proton radiography model

Pinching due to magnetic fields leads to the formation

of an unstable ion filament
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Long range spatial modulation of the proton beam has been

observed in 2D PIC simulations.

Filament instability may explain the well-defined modulations
observed experimentally in the proton energy spectrum.

Conclusions and Outlook
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