Carbon-Hydrogen Demixing and Hydrogen Metallization

N. J. Hartley,^{1,2} T. Cowan,^{1,4} T. Döppner,³ R. Falcone,⁵ L. B. Fletcher,⁶ S. Frydrych,^{7,3} E. Galtier,⁶ E. Gamboa,⁶ D. O. Gericke,⁸ S. H. Glenzer,⁶ E. Granados,⁶ M. MacDonald,^{6,9} A. J. MacKinnon^{,6} E. E. McBride^{,6,10} I. Nam^{,6} P. Neumayer^{,11} A. Pak^{,3} K. Rohatsch^{,1} A. M. Saunders,⁵ A. K. Schuster,¹ P. Sun,⁶ T. van Driel,⁶ J. Vorberger,¹ D. Kraus^{1,4}

¹HZDR, Dresden, Germany ²Osaka University, Japan ³LLNL, Livermore, USA ⁴TU Dresden, Germany

⁵UC Berkeley, USA ⁶SLAC, Menlo Park, USA ⁷TU Darmstadt, Germany ⁸University of Warwick, UK

⁹University of Michigan, USA ¹⁰European XFEL, Germany ¹¹GSI Darmstadt, Germany

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Summary

- At planetary interior conditions, diamonds are formed from polystyrene
- Simultaneously, a rise in reflectivity suggests that the hydrogen in the sample may

be becoming metallic, which is energetically favourable at the conditions

Repeating shots with these and other samples would help confirm this

Figure 1: Experimental schematic, with optical laser drive beam, XFEL probe and VISAR

Diamond Formation

Fig. 2: Diffraction signal from shocked CH

Diffraction data shows clear new peaks from polystyrene (CH)

- Conditions are 150 GPa, 5000 K
- Around 50% of carbon has crystallized within 10 ns

- Shaped laser pulse can drive multiple shocks
- We reach high pressure states with lower temperatures than on Hugoniot

Demixing

- A mixed system splits into regions with different atomic ratios
- Most studied example is H/He demixing
- Has implications for thermal transport, EOS etc.

Fig. 3: H/He enthalpy of mixing at 4 Mbar, from Lorenzen et al., PRL (2009)

Metallic Hydrogen

Fig. 5: VISAR signal, with reflectivity rise at 2nd shock

- Possible evolution:
 - 1st shock melts sample
 - After 2nd shock, hydrogenrich regions metallize
 - Carbon-rich remnant crystallizes into diamond

- VISAR probe shows rise in reflectivity with second shock
- Signature of metallization
- Diamond formation occurs in metallic H stability region

2.00 — :

Fig. 4: CH scattering with (de)mixed fits from DFT-MD

- In CH mixture,
 - demixing is expected to change diffraction
 - We do not observe demixing in fluid CH at 50 GPa or 190 GPa (on
 - Hugoniot)
 - Enthalpy calculations suggest that we should

Fig. 6: CH phase diagram, with metallic hydrogen stability

Dr. N. J. Hartley | Institut für Strahlehphysik | n.hartley@hzdr.de | www.hzdr.de