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Abstract: Permafrost distribution in the Qinghai-Tibet Engineering Corridor (QTEC) is of growing
interest due to the increase in infrastructure development in this remote area. Empirical models of
mountain permafrost distribution have been established based on field sampled data, as a tool for
regional-scale assessments of its distribution. This kind of model approach has never been applied
for a large portion of this engineering corridor. In the present study, this methodology is applied
to map permafrost distribution throughout the QTEC. After spatial modelling of the mean annual
air temperature distribution from MODIS-LST and DEM, using high-resolution satellite image to
interpret land surface type, a permafrost probability index was obtained. The evaluation results
indicate that the model has an acceptable performance. Conditions highly favorable to permafrost
presence (≥70%) are predicted for 60.3% of the study area, declaring a discontinuous permafrost
distribution in the QTEC. This map is useful for the infrastructure development along the QTEC.
In the future, local ground-truth observations will be required to confirm permafrost presence in
favorable areas and to monitor permafrost evolution under the influence of climate change.
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1. Introduction

The IPCC Fifth Assessment Report [1] indicates that most permafrost has been degrading since
the last little ice age and the rate has increased recently, as evidenced by permafrost temperature
increasing and a positive trend of the active layer thickness. Permafrost degradation has an impact
on surface and subsurface hydrologic conditions, soil strength properties, and ecosystems [2].
Mountain permafrost was widely considered to possibly influence slope stability [3] and hydrological
systems [4] and poses a challenge to economic development in high mountain areas. Permafrost in
China was mainly found on the Qinghai-Tibet Plateau (QTP), the largest lower latitude permafrost
region (1.05 × 106 km2) in the world. Warming of permafrost during the last decades was well
documented along the Qinghai-Tibet Engineering Corridor (QTEC) [5–8]. Changes in the active layer
thickness and permafrost temperature due to climate warming and surface disturbances have major
ecological and engineering implications [8–12]. The thawing of ice-rich permafrost has an impact
on the stability of the slopes and the thermokarst [13–15], which could lead to the intability of the
Qinghai-Tibet Railway (QTR) [16]. Climatic change and its associated effects on ground surface
evolution, landscape dynamics, and natural hazards make it important to map permafrost distribution
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on the QTP. Therefore, improved methods for mapping permafrost distribution are essential to
designing road and pipelines and to understanding the dynamics of alpine ecosystems.

The construction of a new expressway from Golmud to Lhasa has been proposed along the
QTEC. Since the permafrost condition at a site would affect the engineering design and cost of road
construction, a detailed and present-day knowledge of permafrost distribution and its relationships
with geomorphology were essential in the corridor. Present available permafrost maps were mainly at
low resolutions, which varied from scales of 1: 600,000 to 1: 10,000,000, although many permafrost
maps have been compiled since the early 1960s [17]. At more local scales, factors that affect local
microclimate and surface energy balance e.g., slope, aspect, local hydrology, vegetation cover, geology,
and snow cover strongly influenced the permafrost features [18,19]. A good understanding of these
effects on permafrost occurrence was significant, as it may provide some hints on the techniques and
measures we can use to artificially simulate similar effects [20–22]. Thus, a detailed and up-to-date
permafrost map of the QTEC was required for mitigating potential engineering problems associated
with permafrost-affected terrain. It will also help to identify areas for further investigation so that
permafrost areas can be avoided or, if necessary, engineering solutions can be designed to maintain the
physical and thermal state of permafrost.

Many models already exist for estimating the spatial distribution of permafrost in regions
of the European Alps [23–25], and the Arctic [26,27]. These models may be of the equilibrium,
empirical-statistical, or process-based types and have been widely used at regional and local
scales [3,28]. Permafrost mapping based on geophysical techniques or process-based types was
expensive, time consuming, and spatially restrictive due to the difficult detection and monitoring of
permafrost on the QTP, although these techniques can provide a detailed and robust transient thermal
state of permafrost. Furthermore, the lack of sufficient and reliable data for calibration and validation
probably was one of the most important limitations for permafrost modeling [25]. Empirical-statistical
models describing the distribution of mountain permafrost based on geomorphological permafrost
indicators and topographic and climatic predictors were a simple yet effective approach toward a first
assessment of its distribution at a regional scale [29–32]. Furthermore, remote sensing as a permafrost
monitoring tool was under continuous development with fine spatial and temporal resolution data
from satellites such as Landsat-8, SPOT-5, and GF-1 and 2 (Gaofen-1, 2 satellite). This technique has
the potential to provide a valuable and cost-effective mean for mapping and monitoring near-surface
permafrost conditions, as well as seasonally frozen ground [33]. High-resolution image and elevation
data acquired by satellite can be used to interpret the geomorphological features such as slope
failure, thermokarst [16,34], and biophysical features such as vegetation, topography, and surface
hydrology [26,35]. A number of studies have demonstrated the usefulness of this approach for
permafrost mapping [29,36–39].

Therefore, the target of this study was to map the potential permafrost distribution in the
QTEC (91◦E–95◦E, 32◦N–36◦N) based on a logistic regression model linking the permafrost existence
probability to surface variables that included vegetation type and climatic conditions at a high
resolution of 30 m. For this purpose, we investigated the surface characteristics (e.g., vegetation, soil)
and permafrost conditions along the QTEC based on the permafrost survey position and boreholes
that were carried out when the QTR and Qinghai-Tibet highway (QTH) were built. Considering the
potential incoming solar radiation, vegetation type, and the mean annual air temperature as potential
predictors, they were compiled and developed from remote sensing data.

2. Study Area

The study area was located in the central QTP and encompassed a 550 km long and 40 km
wide section (22,351 km2) of the QTP (Figure 1a,b), extending from Xidatan to Anduo, which were
the northern and southern boundaries of permafrost occurrence (Figure 1b), respectively, bounded
by latitude 32◦–36◦N and longitude 91◦–95◦E (Figure 1c). This corridor is likely to become a locus
of many developmental projects because constructions of a gas pipeline, QTP, QTR, and electric
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transmission line were along this route. Most parts of the terrain were located above 4500 m a.s.l.,
with alternating distribution of mountains, valleys, and basins. A recent field investigation and
literature indicated that near surface deposits were dominated by coarse materials such as gravel and
sandy soils [10,40]. These specific geomorphologic and sedimentary patterns resulted in significant
differentiations in permafrost features [10]. Climatically, it was located in an extremely continental
climate zone, favoring clear skies and high solar radiation. The mean annual air temperatures (MAAT)
were commonly between −6.5 ◦C and −2.0 ◦C, with the annual total precipitation ranging from
250 mm to 450 mm, which occurred mostly as rainfall between May and August [6,8,40]. The majority
of the plateau had a free snow cover in winter [40]. Vegetation type was characterized as alpine
meadow and steppe with the coverage ranging from 0.3 to 0.9. The detailed information of the
vegetation type was discussed in Section 3.3.
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Figure 1. Study area map. (a) The Qinghai-Tibetan Plateau location in China; (b) map of Permafrost
on the Qinghai-Tibetan Plateau (Modified based on the permafrost map by Li and Cheng [41];
(c) topographic map of the whole study area based on a 30-m DEM data, including mainly local
geographic names of mountains and upland basins.

3. Methods and Materials

In adopting the approach to permafrost probability modeling, we collected and compiled the
necessary data with field work and remote sensing. In order to create predictor variables such as
mean annual air temperature (MAAT), potential incoming solar radiation (PISR), and vegetation type,
MODIS-LST products, a 30 m-DEM (ASTER GDEM), and high resolution (2 m) GF-1 images were
used. The indictor variable representing permafrost presence and absence was based on the thermal
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boreholes. The field point measurements of climate and surface features were used for calibration
and validation.

3.1. Field Data

We carried out the field work from August, 2014 to October, 2015 along the QTEC, mainly near
the QTR and QTH due to the difficult assessment. The sample locations were mainly based on two
sources: (1) thermal boreholes along the QTH and QTR [6,7,40], and (2) geological survey boreholes by
the Road Survey and Design Institution during the period August, 2015 to October, 2015 (15 m depth).
These boreholes could record the permafrost condition (presence or absence) clearly. At each location,
we recorded the soil type, surface features, vegetation type present, and measured the topography
(aspect, slope) with a geological compass. A hand-held GPS (Trimble, Sunnyvale, CA, USA) was used to
measure the geographical coordinate of each location. Finally, we got 344 samples in different vegetation,
topographic, and geologic settings (Table 1). Information on permafrost was recorded based on existing
thermal boreholes in the study area. In general, permafrost was found in all vegetation types with
different frequencies. Vegetation where permafrost was found with intermediate to high frequency
included degrading alpine meadow (82.5%) and alpine steppe (91.7%). Statistics of field data showed that
vegetation classes were strongly related to near-surface soil type; however, this relationship needed more
detailed ground investigation for identifying. Active-layer thickness (ALT) in different vegetation classes
had great variations. For example, in alpine meadow the ALT ranged from 0.9 m to 5.3 m. The ALT
varied from 1.1 m to 4.1 m for degrading alpine meadow. In the alpine steppe, the range was from 1.0 m
to 6.5 m. For the sparse grassland, the ALT was between 0.8 m and 7.5 m. In bare ground, the ALT had
a range from 1.2 m to 6.2 m. Generally, the ALT was thinnest in the alpine meadow and degrading alpine
meadow. In addition, the permafrost temperature (mean annual ground temperature at 10 m depth,
MAGT) varied in different vegetation classes. For most sites in alpine meadow and degrading alpine
meadow, the MAGT was colder than that in other vegetation classes.

Table 1. Summary of field data collected in different vegetation, topographic, and geologic settings.

Vegetation Type Near-Surface (0–50 cm)
Soil Type

Permafrost Active Layer
Thickness (m)

Permafrost
Temperature (◦C)Present/% Absent

Alpine meadow Sandy loam 85/82.5 18 0.9~5.3 −3.9~0

Degrading alpine meadow Sandy loam 44/77.2 13 1.1~4.1 −3.6~0

Alpine steppe Sand with gravel 33/91.7 3 1.0~6.5 −2.9~0

Sparse grassland Sand with gravel 37/46.8 42 0.8~7.5 −2.6~0

Bare ground Stone and gravel 37/53.6 32 1.2~6.2 −3.1~0

Seven climate stations were available in this study (Figure 1c, Table 2). They were located
in different terrains and recorded the near ground surface (1.5 m above the ground surface) air
temperature every 4 h. The field air temperature was used to verify the relationship between
MODIS-LST and air temperature.

Table 2. Locations of the weather stations and number of years with observations.

Weather Station Name
Location

Averaged MAAT Record Years
Longitude (◦N) Latitude (◦E) Elevation (m)

K 966 * 94.04 35.72 4587 −4.4 2014−2016
K 980 94.05 35.61 4736 −5.8 2014−2016

Wudaoliang 93.08 35.19 4612 −4.5 2012−2016
K 3035 92.98 34.99 4593 −3.5 2014−2016
Beiluhe 93.93 34.82 4648 −3.4 2005−2016

Tuotuohe 92.43 34.22 4533 −4.0 2005−2016
Anduo 91.72 32.40 4780 −3.3 2014−2016

* K 966, K 980—Mileage of the QTR, K 3035- Mileage of the QTH.
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3.2. Statistical Model and Validation

Logistic regression model has been widely used in spatial permafrost modeling [31,32,39]. For the
detailed theory of this statistical model, one can refer to the above literature. This approach estimates
the probability of permafrost presence (Y= 1) or absence (Y = 0) based on a set of log odds of dependent
variable. It solves this problem (Equation (1)):

ln
(

P(Y = 1)
1 − P(Y = 1)

)
= B0 + B1x1 + B2x2 + . . . + Bnxn (1)

in which P(Y = 1) is the probability of permafrost existence, B0 the intercept, and Bn the repression
coefficient of the explanatory variable xn. Therefore, a non-linear transformation from the linear
repression creates an S-shaped distribution function. The predictors related to the probability of
permafrost presence are solved by a multivariate global logistic repression model (Equation (2)):

P(Y = 1) =
1

1 + e−(B0+B1x1+B2x2+...+Bnxn)
(2)

in which e is the base of the natural logarithm.
The above process step was undertaken using the statistical program package SPSS 20 (IBM Corp.,

2011, Armonk, NYC, USA). To avoid a chance occurrence of anomalous model performance, we ran the
logistic regression model ten times, each time with approximately two-thirds of the randomly selected
sampled data (Monte Carlo random number generation in MATLAB) to train the model and the remaining
one-third to validate the model. We used the coefficients, which were produced from the run with
highest classification accuracy for testing data, as input variable classes. Additionally, model performance
was evaluated using the area under the receiver operating characteristic curve (AUROC) in software
program ROC-AUC [42]. In this study, the curve showed the probability of detecting observed
permafrost occurrences and absences for the whole range of possible decision thresholds that could
be used to dichotomize predicted odds into permafrost presence/absence. To simulate the final accuracy,
we compared the model results with spatial field measurements from three typical study areas—Xidatan
area, Beiluhe basin, and Anduo area, in which permafrost was investigated in detail in recent studies
(Figures S1 and S2).

3.3. Remote Sensing-Independent Variables

3.3.1. Ground Surface Type

Mountain permafrost environments were characterized by a strong heterogeneity on small
spatial scales, so that high resolution (HR) remote sensors were generally required. The imagery
of GF-1 was useful to extrapolate the surface features due to its high spatial resolution (2.0 m × 2.0 m)
and wide area coverage (>60 km × 60 km). GF-1 data has five spectral bands: panchromatic
(0.45–0.90 µm), blue (0.45–0.52 µm), green (0.52–0.59 µm), red (0.63–0.69 µm), and NIR (0.77–0.89 µm).
The image was preprocessed by China Centre for Resources Satellite Data and Application (CCRSDA)
before we used in this study. The process included radiometric calibration, atmospheric correction,
geometric correction, and image sharpening. On average, the orthorectification process achieved
a root mean square error (RMSE) of less than 4 pixels in both x and y directions. Finally, 45 images
were acquired for the study area from the CCRSDA. These images covered the period from July 2014
to October 2014, and were selected based on the time with little or no cloud. Meanwhile, this period
was at two different phenological stages: the start of vegetation growing season and the late summer.
The ground surface type classes were defined mostly based on plant community features, as well as
their GF-1 spectral signature (Table 3). The object-oriented classification and visual interpretation
methods were used to generate maps of land cover. Moreover, the object-oriented image feature
extraction method was suitable for the HR data. This process step was completed using the ENVI



Remote Sens. 2018, 10, 215 6 of 18

software (http://www.harrisgeospatial.com/docs/ExtractFeatures.html) under the tool of ENVI
Feature Extraction. This tool provided a guided workflow with two main parts: finding the object
and extracting the features. Table 3 summarized the object features and extraction rules adopted in
this study. Normalized difference vegetation index (NDVI) was one of the most widely used indices
applied to mapping vegetation. The NDVI of different land cover types had obvious difference.
Analysis of image texture (from band 4) showed the textural differences between different ground
surface types. Additionally, different landforms have different shape and colour characteristics within
the satellite images. Finally, nine land-cover classes were derived from the GF-1 images with an output
resolution of 30 m. Theoretically, classification accuracy should be assessed against existing maps that
were established using other methods; however, for our study area, such maps were not available.
In order to estimate the classification accuracy, we directly investigated and compared the classified
image with the field conditions at 400 GPS locations.

3.3.2. Mean Annual Air Temperature (MAAT)

To build a high-resolution response variable representing air temperature conditions,
the MODIS-LST products (1 km resolution) were used in this study to produce near surface air
temperature dataset. MODIS L3 data were available from NASA Warehouse Inventory Search Tool
website. The used LST (land surface temperature) products contain day-and night -time surface
temperature based on the generalized split window approach [43]. The assumption that the arithmetic
average of the maximum and minimum LSTs can represent the daily mean LST has been well
established [44,45]. A time series of daily LST average was compiled using at least one daytime
and one nighttime data, and then we calculated the mean annual LST. The details of processing were
similar to Zou et al. [46]. Finally, we get an annual time series of LST from 2012 to 2016.

Previous research showed that MODIS-LST did not closely match the real ground surface
temperature, but was close to air temperature in permafrost environment [47]. On the QTP, similar rule
was also found due to the mixed pixel covering different vegetation type and water body [48,49].
We compared the mean annual MODIS-LST with field point measurements of air temperature.
According to this comparison, we assumed that the MODIS-LST could present the MAAT spatially.
The statistical-empirical model was based on an equilibrium assumption that meant we should use
temperature averages over long term rather than a single year. Therefore, 5-year averaged MAAT was
used in this study.

High-resolution spatially distributed information on MAAT was modeled for period 2012–2016
by a simple model (Equation (3)) from MODIS-LST products. Daily temperature data from available
MODIS-LST products was used to (i) calculate the appropriate lapse rate by the Equation (3) and
a 1 km-DEM; and (ii) lapse to 30 m grid point with a 30 m-DEM by Equation (3), given that the lapse
rate (∆T/∆H) in a 1 km grid only moderately varied.

Lapse rate =
∆T
∆H

=
MAATi − To

Hi − Ho
(3)

in which MAATi is the temperature of each grid (◦C), To the averaged value of MODIS-LST products
(◦C), Hi the elevation of each grid (m), and Ho the averaged elevation (m).

3.3.3. Solar Radiation (PISR)

Spatially distributed solar radiation (Wh/m2) was calculated using “Area Solar Radiation” tool
and the ASTER GDEM data with a 30 × 30 m resolution in ArcGIS 9.3 (ESRI, 2009, Redlands, CA,
USA). Annual PISR was calculated at a 10-day interval with a half hour time resolution between 4 a.m.
and 10 p.m., for the whole year, since the snow cover was free during winter. Default values (such as
diffuse proportion 0.3, transmissivity 0.5) representing general clear skies were used as radiation
parameters due to lack of field meteorological data.

http://www.harrisgeospatial.com/docs/ExtractFeatures.html
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Table 3. Object features of NDVI, texture, shape, and colour for the satellite image used in this study.

Class ID Object Definition NDVI Texture Shape Image Colour

1 Alpine meadow Vegetation cover >0.7, dominated by Kobrecia parva 0.4–1.0 Uniform and clear Continuous distribution
and boundary Red, light red, and pink

2 Degrading alpine meadow Vegetation cover between 0.3 and 0.8, dominated by
Kobrecia parva and Stipa purpurea. 0.2–0.6 Fine and smooth Irregularity Red, light red, and pink

3 Alpine steppe Sand and gravel land covered by vegetation
(cover <0.25), such as Carex moocroftii 0.15–0.3 Fine Irregularity Red, light red,

and pink, uniform

4 Sparse grassland Bare land with very spares vegetation (cover b0.2),
such as Stipa purpurea. 0.15–0.25 clear Irregularity Pink and light red

5 Bare ground
Exposed lands without vegetation cover, such as

bedrock outcrops with sand and gravel, roads,
and work-yards.

0–0.15 Fine and uniform Irregularity off white

6 Lake Deep water, including thermokarst lakes <0 Fine, clear, and uniform Obvious geometrical
characteristic, such as oval

Blue, dark blue,
and light blue

7 River Shallow water including streams <0 Fine and clear banded Blue, dark blue,
and light blue

8 Bench land Fluvial outwash 0–0.1 Fine and uniform zonal or sheet off white

9 Snow/glacier Mainly distributed on the high mountain peak. <0 Fine and homogeneous Distributed along
contour line White and uniform
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4. Results

4.1. Remote Sensing Inputs

Main remote sensing products were developed: land cover map from GF-1 images (Figure 2a),
MAAT modeled from MODIS-LST product, and 30-m DEM (Figure 2b), and PISR from a 30-m DEM
(Figure 2c). The land cover map (Figure 2a) showed that the land cover could be classified into 9 types,
and the vegetation (4 types) covered the most area (over 85%) (Figure 3). According to the land
cover map, the vegetation mainly distributed below 5100–5400 m a.s.l. on the south-facing slopes and
4600–5100 m a.s.l. on the north-facing slopes. Alpine meadow dominated the whole study area and
occupied 25% of the QTEC. There were approximately 34,937 lakes interpreted on the images over the
study area. Lake areas ranged from 17.5 m2 to 111.2 km2 with mean area of 11,429 m2. Snow cover
was distributed over the high mountains such as Tanggula mountain and Kunlunshan. This was limited
snow cover distribution, which occupied only 1.4% of the total area (Figure 3). Generally, snow cover
distributed above 5100–5600 m a.s.l. on the south-facing slopes and 4900–5200 m a.s.l. on the north-facing
slopes. Compared with 400 field-sampled locations, overall accuracy of the land-cover classification
was 92.6% (Table 4). Frequency statistics of spatially-distributed annual PISR were shown in Figure 4c.
The PISR had a normal distribution with a mean value of 2.1 × 106 Wh/m2 and a standard deviation of
1.46 × 105 Wh/m2. The spatially-distributed MAAT was calculated from MODIS-LST products. Figure 4b
indicated that downscaled MODIS-LST (modeled MAAT, Equation (3)) highly agreed with the measured
MAAT (R2 = 0.87). The mean modeled MAAT was −3.9 ◦C (with standard deviation (SD) of 0.8 ◦C),
which was similar to the observed mean MAAT of 4.1 ◦C with a range of −3.3~−5.8 ◦C (Table 2). The mean
error (ME) of the modeled MAAT was −0.42 ◦C with a root mean square error (RMSE) of 0.57 ◦C. The result
indicated a 5-year mean MAAT of 0 ◦C isotherm altitude at 4250 m a.s.l. in Xidatan area, which rose
southward to 4700 m a.s.l. in Anduo area.
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Table 4. Classification and field site identification accuracies for the land cover map.

Class ID Class Name
Field Site Identification Accuracy (%)

Number of Sites User’s Accuracy

1 Alpine meadow 103 92.1
2 Degrading alpine meadow 57 88.7
3 Alpine steppe 36 85.5
4 Sparse grassland 79 91.3
5 Bare ground 69 87.2
6 Lake 20 100
7 River 10 98
8 Bench land 16 91
9 Snow/glacier 10 100

Average user’s accuracy 92.6

4.2. Statistical Permafrost Model

Statistical analysis was based on a dataset of 344 field samples. The minimum and maximum
classification accuracies achieved with the training data ranged from 83.0% to 87.4%, whereas those
for testing ranged from 80.7% to 87.7%, assuming the common cutoff value of 0.5. The average overall
classification accuracies achieved for ten runs were 85.4% and 83.5% for training and testing data,
respectively (Table 5). For all ten runs, the significant level was well above 0.05, suggesting the model
adequately fit the input data. We selected the coefficients as input variables, which were produced from
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the model run with highest classification accuracy for testing data (Table 5). The regression model’s overall
fit, as well as all coefficient estimates, was highly significant (bootstrap p < 0.001, Table 5). As expected,
both MAAT and solar radiation were negatively related to permafrost occurrence. A probability threshold
of 0.7 was chosen to discriminate between “permafrost probable (p ≥ 70%)” and “permafrost improbable
(p < 70%)” locations, and thus for delineating the potential permafrost extent. This classification cutoff
was based on the optimal cutoff of 0.73, which was calculated by ROC-AUC program.

Table 5. Statistical coefficients and accuracy assessments for the model.

REGRESSION RESULTS

Variables Coefficients Bias SE p
Vegetation −1.058 0.041 1.14 0.000

PISR −1.188 −0.835 5.79 0.000
MAAT −0.486 −0.072 0.313 0.000

Constant 3.085 0.825 4.943 0.000
VALIDATION

Run Training Validation
Highest * 83.0% 87.7%
Average

accuracy ** 85.4% 83.5%

Note: * Highest classification accuracy for testing data among ten runs; ** Ten-runs’ average classification accuracy
for training the model.

4.3. Spatial Permafrost Distribution

Spatially-distributed probabilities of permafrost presence condition were computed in ArcGIS
with raster calculator, inserting the regression’s coefficient estimates in Equation (2) (Table 5).
The spatial distribution of the permafrost probability in the QTEC was depicted in Figure 5a.
In general, the potential permafrost areas tended to decrease in upland plain in the central QTEC
(Tuotuohe area and Kaixinling area). More favorable conditions were concentrated in the higher
areas of the study areas, such as Kunlunshan (>4900 m a.s.l.), Fenghuoshan (>4800 m a.s.l.),
and Tanggula mountain (>5000 m a.s.l.). In contrast, lower scores (p < 50%) were associated with lower
hillslopes, valley bottoms, and upland plains.

Considering a p > 70% and excluding rivers, lakes, and glacier surfaces (total 452 km2),
highly favorable conditions for permafrost occurrence were inferred for 60.3% of the study area,
or 13,196 km2, indicating the discontinuous permafrost distribution (underlying 50–90% of the landscape)
in the QTEC (Table 6). If considering a general score >50%, the potential permafrost would cover 87.8%
of the study area, or 19,236 km2. In the north-boundary of the QTEC—Xidatan area, permafrost was
probable (p > 0.7) above 4350 m a.s.l. on north-facing slopes and above 4700 m a.s.l. on south-facing
slopes. In the central ranges of the QTEC, the average lower boundary of permafrost occurrence lay at
approximately 4700 m a.s.l. In the south boundary of the QTEC-Anduo areas, the calculated limits were
higher: permafrost was probable above 4700 m a.s.l. on south-facing slopes and above 4900 m a.s.l. on
north-facing slopes. Upland plains were usually above 4500 m a.s.l. (Xieshuihe, Beiluhe, Chumaerhe,
and Tuotuohe); however, there seemed no obvious lower limit of permafrost distribution.

Comparisons of modeled permafrost distribution with independent ground-truth observations
were performed in this study. We compared the results with the observations in three areas—Xidatan,
Beiluhe, and Anduo (Figure 5b–d), although not all of the research data have been published
(completed and under submitting, Figures S1 and S2). Table 7 showed that the overall consistency
between modeled permafrost existence and direct permafrost observations was 75.0%, considering
that Xidatan and Anduo were the boundaries of permafrost distribution on the QTP, where permafrost
was warm, and this accuracy was acceptable.
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Table 6. Distribution of areas favorable for permafrost in the QTEC.

Permafrost Probability (%) Area * (km2) Percent (%)

0–20 402 1.8
20–50 2260 10.3
50–70 6040 27.6
70–90 10,204 46.6

90–100 2992 13.7
Total 21,899 100

* Note: Rivers, lakes, and glacier surfaces are (452 km 2) excluded.

Table 7. Comparison of direct permafrost observations.

Observed and Other Studies
Predicted Permafrost Existence

Consistency (%)
Yes No

Xidatan (n * = 13) 8 2 77.0
Beiluhe (n = 20) 14 1 75.0
Anduo (n = 3) 1 1 67.0

Overall (n = 36) 23 4 75.0

Note:* number of the boreholes.
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5. Discussion

5.1. Predictor Variables for the Model Inputs

Land cover, e.g., vegetation type, has large effects on the development and distribution
of permafrost in the corridor, because of vegetation’s influence on surface energy balances and
associations with soil characteristics [50], consistent with field observations in this study (Table 1).
Shallow lithology is an important factor influencing permafrost temperatures and extents because of
varying thermal offsets in different materials in the corridor [51]. While there are surficial geology
investigations in this study, they had poor spatial accuracies and only empirical-statistical relations
between shallow soil and vegetation type were demonstrated. Therefore, geological factors were
not considered in this research due to unavailable geology maps. Its effects should be quantitatively
studied in the further studies. The significant effects of potential incoming solar radiation on mountain
permafrost extents have been identified in various alpine areas [52–54], consistent with model estimates
in this study.

Climatic indices such as MAAT were the primary drivers of landscape-level permafrost extent [54].
Commonly, MAAT is a relatively availably variable. Spatial extrapolation of MAAT with the choice of
appropriated lapse rates in rugged terrain is very important for permafrost distribution modeling. It is
well known that near-surface lapse rates vary in time and space, even over short distances [55–57].
Therefore, there are still large uncertainties from use of a spatially uniform lapse rate for temperature
extrapolations [31]. Meanwhile, measurements of near-surface lapse rates on the QTP are rare,
impeded by low density of long-term climate stations. It is significant to employ a simple but
efficient model to calculate spatial air temperature distribution over large area [32]. In this study,
the high-resolution near-surface air temperature distribution was modeled from MODIS-LST products
and a 30 m DEM by a simple model (Equation (3)). The overall temperature lapse rate obtained in
this study was −0.45 ◦C per 100 m with a standard deviation of 0.42 ◦C, which was lower than the
average temperature decrease (−0.6 ◦C per 100 m) in the free atmosphere [58], but reasonably close
to the average lapse rate of −0.5 ◦C per 100 m on the QTP [57]. The precision of the modeled MAAT
(R2 = 0.87, ME = −0.42 ◦C, RMSE = 0.57 ◦C, SD = 0.8 ◦C) announces the uncertainties in combining
different resolution datasets. The main issues for the model here are that there are still landform
variations, even over short distance within a 1 km grid. In addition, the quality of DEM products
can also affect the calculation accuracy. Considering the effects of different underlying surface on
MODIS-LST, overall modeled MAAT may have a warm bias, even though they are compared with
the limited availability of field air temperature data (Figure 4b). However, this level of uncertainty
indicates that our research approach is likely applicable in order to obtain high-resolution near-surface
air temperature distribution on the QTP. Given the low density of available climate stations along the
QTEC for model inputs and verifications, more high elevation stations are urgently needed in the
further studies.

5.2. Permafrost Model Performance

Sophisticated numerical models can be applied to address large-scale climate impact on permafrost
distribution for lowland areas [59]. For more local applications in mountain areas, permafrost indictors
such as temperature measurements under a stable snow cover (BTS) or landforms (rock glaciers) may
be more suitable [60], due to lack of physical parameters that characterize permafrost and a mass
of computing resource need of numerical models. The study presented here is a first-time attempt
to simulate the permafrost distribution using a multi-dimensional statistical relationships between
permafrost existence and meteorological-land cover-derived in the QTEC. A major drawback for the
data basis is the lack of data in steeper terrains (i.e., higher mountains such as Tanggula mountain areas).
Figure 6 shows the model variability and uncertainty for three sections of the study area. In Xidatan
section, MAAT and surface conditions show little variations, and the degree of solar radiation and local
hydrology has a large effect on permafrost existence and model output. Unlike upland plain areas such



Remote Sens. 2018, 10, 215 13 of 18

as Beiluhe basin, vegetation cover and type show a negative relation to permafrost existence in this study.
This is probably due to the low number of quantitative data points and limited consideration for shallow
lithology and hydrological influences. Variations in specific local environments and processes in upland
plain areas such as permafrost distribution depicted in Yin et al. [61] cause the most model variability and
uncertainty in our study. For Anduo section, there are only three field sites; however, the MAAT and PISR
are the main factors governing the permafrost existent and model result due to the site location (south
boundary of permafrost distribution) on the QTP.
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This type of approach used in our study is well known and widely used in mountain areas such
as the Alps, and the rock glacier as the empirical foundation for permafrost favorability models is often
used to validate the results. However, there are not enough studies referring to rock glaciers on the QTP.
It is difficult for researchers to make appropriate assumptions for permafrost existence. Evidence of
direct thermal borehole is more suitable for our study, at least they were placed representatively
according to a meaningful sampling designing.

In general, our study gives a coherent picture of permafrost distribution, but does not reproduce
active-layer thickness and permafrost temperature. Therefore, this approach is not useful for evaluating
the impact of climate change on permafrost condition. However, this map is very useful for current
infrastructure construction, such as engineering problem solutions associated with permafrost and
further investigation for permafrost areas.

5.3. Comparison with Previous Studies

The most widely used permafrost distribution map on the QTP was compiled by Li and Cheng [41]
(Figure 1b). This map synthesized field data, literature, aerial photographs, satellite images, and many
relevant maps. Wang et al. applied a 0.5 ◦C MAGT isotherm to depict the permafrost distribution on
the QTP [62]. This threshold was interpolated based on the relationship between elevation/latitude
and the MAGT observations along the QTH [63]. However, limited numbers of field observations were
used for assessment of these maps, without independent validation [63]. The permafrost boundary
was mainly based on a threshold of air temperature isotherms and modified in several regions
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using field data based on the authors’ knowledge. The approach presented in this study differed
from these mainly in the algorithm employed to estimate permafrost probability integrated with
high-resolution remote sensing data and in the complete statistical assessment of the model results.
A direct comparison of our results (areas with score ≥ 70%) to these maps showed that our results
could provide more detailed permafrost distribution at a local scale, and permafrost is discontinued
in the QTEC. Furthermore, model-model comparisons were performed for assessing uncertainties
in permafrost distribution. The permafrost zonation index (PZI) of Gruber [64] was an independent
global-scale empirical modelling effort at a 1km resolution based on downscaled reanalysis data.
For comparison, our result was resampled to PZI resolution. Permafrost areas with a PZI ≥ 0.7
(12,044 km2, excluding lake, river, and glacier surface) were smaller than the areas in this study
(13,196 km2) along the QTEC. This study had an AUROC of 0.73, which is similar to the AUROC value
obtained in recent permafrost modelling studies in the Alps [25] and Andes [32].

Overall, compared to previous empirically based studies [31,32,41,62,65,66], the permafrost modelling
approach used in this work integrates remote sensing products with more flexible, nonlinear models of
potential permafrost distribution in comparison with previous research approaches.

5.4. Permafrost Temperature and Effects of Climate Change

Climate warming has resulted in significant degradation of permafrost [1]. The global average
increase in MAAT has been 0.3–0.6 ◦C since 1880, and on the QTP MAAT has increased 0.3–0.5 ◦C
during the past 40 years [67]. Permafrost near the lower limit of permafrost distribution can be more
sensitive to degradation processes due to the possible effects of climate change [68]. Over the past
50 years, and particularly since the 1980s, air temperature and precipitation have distinctly increased
in the central QTEC [61], indicating that over the last decades there has been warming and wetting.
Along the QTEC, ALT was reported to be increasing at 6.3–7.8 cm·yr−1 over a period from 1995 to
2010 [7,8], which was higher than the rates of 1.33 cm·yr−1 for the period 1981–2010 outside the
QTEC [69]. The average permafrost temperature rise at the depth of 6.0 m was 0.02 ◦C·yr−1 over
a period from 2006 through 2010 [8]. These warmings could lead to geotechnical problems and potential
hazards to important roads or infrastructures in the QTEC (e.g., QTH and QTR) [14,70]. In this study,
the permafrost probability map can serve as an up-to-date resource to assess permafrost conditions
and uncertainties in mountain research and practical applications such as infrastructure planning.

6. Conclusions

In this study, a statistical permafrost distribution model provided an insight into mountain
permafrost distribution in the Qinghai-Tibet Engineering Corridor, China. We derived the high-resolution,
spatially permafrost probability map by developing logistic regression models from field data and remote
sensing data, and integrating the model in a GIS framework. From this study the following conclusions
can be drawn:

1. The results of the land cover type and MAAT model emphasized the importance of the GF-1
satellite image to derive ground surface parameters, and the appropriateness of the MODIS-LST
product to determine temperature distribution with scarce and heterogeneous temperature
records from weather stations. Moreover, the results of the MAAT model can provide valuable
data to study other climatically driven earth surface features widely and relatively easily on
the QTP.

2. The approach used here has given a valid picture of permafrost distribution at a local scale. The map
accuracies were assessed using independent field observations. The model results suggested that
permafrost was discontinuous and occupied about 60.3% of the QTEC, excluding rivers, lakes,
and glacier surfaces. Lower limits of permafrost occurrence (p > 70%) increased from 4350 m a.s.l. in
the north to 4700 m a.s.l. in the south.
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3. Finally, the findings of this research contributed mainly to improving the general knowledge
about permafrost distribution in the QTEC, providing valuable information to government for
infrastructure planning, such as pipeline or railroad routes. The high-resolution vegetation map will
also serve as a baseline map to identify areas of permafrost degradation and ecosystem changing
under the background of climate warming. Additional research, in particular, taking into account
ground-truthing and local conditions, is necessary in order to refine the present model and evaluate
possible permafrost change.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/2/215/s1.
Figure S1. Photo of the thermal borehole distribution for permafrost investigation in Xidatan. The results has
been submitted to Journal of Mountain Science by Luo et al. (2017). (Jing Luo, Fujun Niu, Zhanju Lin, Guoan Yin,
Minghao Liu, variations in the northern permafrost limit in the Qinghai-Tibet Plateau over the last four decades,
Journal of Mountain Science, 2017, under revising); Figure S2. Photo of the thermal borehole distribution for
permafrost investigation in Anduo. The results have not been submitted.
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