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Abstract: With the development of high-speed analog-to-digital converter (ADC)-based wireline
receivers, the Mueller–Muller clock and data recovery (MM-CDR) circuit has garnered increasing
attention. But in the design stage, evaluating the loop performance of MM-CDR circuits in ADC-based
wireline receivers is challenging due to the absence of a linearized model for a Mueller–Muller phase
detector (MMPD). In this paper, a linearized model of the MMPD is proposed by analyzing the output
probability of the MMPD in different transition patterns with random jitter injection, and the model is
combined with an entire MM-CDR system to analyze the performance of the MM-CDR loop. Analysis
of the linearized model and corresponding simulations indicate that when the reference voltage level
in the MMPD is set equal to the amplitude of the average crossing voltage at the intersection of 011
and 110 patterns, the MMPD can obtain the maximum gain, which is determined by jitter, and the
jitter transfer function and jitter tolerance can achieve optimum performance.

Keywords: clock and data recovery; Mueller–Muller phase detector; linearized model; jitter tolerance

1. Introduction

With the great improvement of data transmission rate requirements under severe
channel impairments, the analog-to-digital converter (ADC)-based wireline receiver (RX)
receives more and more attention because of its flexible and powerful equalization capa-
bility. The sampling clock of the ADC is adjusted by the clock and data recovery (CDR)
circuit. The classical Bang-Bang phase detector (PD) is no longer the best choice for the
high-speed CDR circuit because of its requirement for double oversampling information,
which consumes excessive power in ADC-based architecture. Therefore, the baud-rate CDR
has been used increasingly in ADC-based high-speed wireline receivers. The baud-rate
CDR only collects one sample per unit interval (UI), so the rate requirement of the sampling
clock is halved compared with the Bang-Bang PD (BBPD). Baud-rate CDR usually adopts a
Mueller–Muller phase detector (MMPD) to determine the optimal sampling phase of the
ADC clock [1–3].

The intuitive understanding of the performance of the CDR loop is whether it can
provide an optimal sampling phase for the ADC to make the wireline transceiver system
achieve the lowest bit error rate (BER). During testing, CDR performance can be assessed
through BER results. However, in simulation, it is difficult to verify the BER requirements
of 1 × 10−12 or even 1 × 10−15 for communication protocols. Thus, we cannot obtain
the performance of the CDR through time-domain simulation during the design stage.
Consequently, during the design stage, CDR performance can only be analyzed by lin-
earizing the CDR loop. Such an analysis method has been widely used in Bang-Bang CDR
(BB-CDR) [4–8], In [4], Sonntag et al. presented a general architecture for digital clock
and data recovery for high-speed binary links and provided a linearized analysis of the
BBPD and CDR loop. For the baud-rate CDR architecture, a lot of work has analyzed its
performance [9–12]. In [10], Han et al. combined current integration in the front end for
energy-efficient equalization with integration phase dithering to realize a robust baud-rate
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CDR and analyzed the performance of the CDR loop by adding dither information. In [11],
Lee et al. generated the reference level for phase error detection from the consecutive
identical bits (such as 011 or 110 pattern) in its proposed PD architecture and completed
the analysis of the CDR loop performance through the probability density function (PDF)
of the three-bit pattern. In [12], Park et al. proposed pattern-based PD considering three
consecutive data and one error, which increases the density of transition to be detected to
twice that of a conventional MMPD.

However, the performance of baud-rate Mueller–Muller CDR (MM-CDR) cannot be
analyzed because of the lack of a linearized model of an MMPD in previous works; these
studies only focused on the application of MM-CDR without a systematic analysis [13–17].
For example, in [13], Francese et al. modified the lock point of MM-CDR to the unequalized
pulse response. In [16], Choi et al. adopted a weight-adjusting sign–sign MM-CDR with
the maximum-eye tracking algorithm to make the CDR lock at the optimal phase that
maximizes the eye height. To solve this problem, Liu et al. proposed a linearized model
for a MM-CDR for the first time [18]. They introduced drift bit width to characterize an
MMPD. However, this study lacked analysis of the relationship between reference voltage
and drift bit width and the impact of different reference voltages on the performance of the
CDR loop.

In this work, we investigate the influence of the reference voltage on the MMPD by
proposing a segmented linear function to model the relationship between voltage and
phase and finally propose a linearized model for MM-CDR. This article has the following
organization. Section 2 delineates the working principle of the MMPD and the linearization
of the MMPD. Section 3 details the small signal model of MM-CDR followed by Section 4,
which exhibits the simulation results of the MM-CDR. Finally, Section 5 summarizes
the conclusions.

2. Mueller–Muller Phase Detector
2.1. The Principle of MMPD

The MMPD infers the channel response from baud-rate samples of the received data,
and the adaptation aligns the sampling clock such that the pre-cursor is equal to the
post-cursor in the pulse response defined in [1]. The timing function f (τ) is expressed as

f (τ) =
1
2
(h1 − h−1) =

1
2
[h(τ + T)− h(τ − T)] (1)

where h(τ) is the pulse response of the system, and h0, h1 and h−1 represent the amplitude
of the current-cursor, post-cursor and pre-cursor, respectively. The result of the sampling
instant for a pulse is shown in Figure 1. Algorithms will choose their steady-state timing in
such a way as to yield equal echoes h1 and h−1. If h1 is greater than h−1, the sampling time
of CDR is early. Similarly, if h1 is smaller than h−1, the sampling time of CDR is late.

h0

h1h-1 TT

t

Figure 1. The sampling instant with 2 f (τ) = (h1 − h−1) timing function.
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The generation of the MMPD timing estimator zk for the binary signaling format
defined in [1] is shown in Figure 2a, and its expression is

zk =
1
2
(xkdk−1 − xk−1dk) (2)

where xk is the input analog samples and dk is the signal decision value which can only be
values of ±1. And the expectation is

E{zk} =
1
2
(h1 − h−1). (3)

dk

ek

x(t)

0

-Vref

+Vref

(a)

dk ek sk

0 0

-1-1
-1

+1

+1 +1 +1

-Vref

+Vref

(b)
Figure 2. (a) The generation diagram of the MMPD timing estimator zk. (b) The value of dk, ek and sk.

Thus, the timing function f (τ) is transformed into the expectation of timing estimator
zk. The analog samples xk are converted to digital signals sk after ADC. For simplicity, at
least we can use two-bit sk to express the input signal, as shown in Figure 2b. Thus, sk can
be expressed with dk and ek as

sk =
dk(ek + 1)

2
(4)

where ek is the error signal generated by the comparison between xk and ±Vre f . Then, the
MMPD timing estimator zk can be converted to

zk =
xkdk−1 − xk−1dk

2
∼ skdk−1 − sk−1dk

2
=

dkdk−1(ek − ek−1)

4
. (5)

Equation (5) illustrates how the phase error is detected based on the sign of two consecutive
samples and the sign of two consecutive errors. The waveform diagram of phase error
detection is shown in Figure 3, and the phase error values are listed in Table 1.

+Vref

0

-Vref

Error=+1

Error=+1

Error=-1

S0 S1 S2 S3

Phase Early
Phase Late

dk-1

dk

+Vref

0

-Vref

Error=+1

Error=+1

Error=-1

S0 S1 S2 S3

Phase Early
Phase Late

dk-1

dk

Figure 3. The phase error generation of the MMPD.
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Table 1. Truth table of the MMPD.

dk dk−1 ek ek−1 Phase Error

1 −1 1 −1 Late
−1 1 1 −1 Late
1 −1 −1 1 Early
−1 1 −1 1 Early

All other cases Hold

2.2. The Influence of the Reference Voltage

Compared to BBPD, the MMPD needs two more comparisons between the input
and reference voltage ±Vre f , respectively, which influences the MMPD output directly.
Considering that the output of the MMPD has judgments of late and early, we assign “1” to
late and “−1” to early.

Figure 4 illustrates the MMPD output characteristic at different reference voltage
values. When the value is appropriate, all phase error information can be output correctly,
as shown in Figure 4a. The MMPD average output value is equal to the product of data
transition density (KTD) and average detection density (KDD), where KTD can be assumed
to 0.5 for random data and the KDD is 0.5 in a conventional MMPD, because only half of
the transitions can be detected [12].

dk-1

dk

PD  avergae output

Phase

-π 

0.25

π 

-Vref

0

+Vref

CLK

-0.25

(a)

Phase

-π π 

-Vref

0

+Vref

0-2π 

CLK

dk-1

dk

φf -φf 

(b)

dk-1

π 

-Vref

0

+Vref

CLK

Phase

dk

-π 0-2π φf -φf 

(c)

dk-1

π 

-Vref

0

+Vref

CLK

Phase

dk

-π 0-2π φf -φf 

0.5*KDD

-0.5*KDD

(d)

Figure 4. MMPD output characteristic (red: phase early, blue: phase late) (a) reference voltage is
appropriate, (b) reference voltage is lower than appropriate value, (c) reference voltage is higher than
appropriate value, (d) reference voltage is too higher to detect all transition.

However, if the reference voltage is lower than the appropriate value, there is a fuzzy
phase region where the phase error information cannot be captured correctly, as shown in
Figure 4b. This occurs because in the generated error signal, both ek and ek−1 are +1 in this
region, which gives “hold” information as defined in Table 1. Only when the sample phase
offset is larger than the fuzzy phase ϕ f , PD captures the phase error information. On the
other hand, when the reference voltage is higher than the appropriate value, there is also a
fuzzy phase region, because both ek and ek−1 are −1 in this region, as shown in Figure 4c.
If the reference voltage is even higher, as shown in Figure 4d, some transition will be lost
because of the previous bits residual state, which lowers the detection density.

2.3. Linearization of MMPD

To facilitate the analysis of the MM-CDR loop performance during the design stage,
it is essential to linearize the MMPD. Previous works have developed linearized models
for BBPD by incorporating jitter sources such as random jitter (RJ) and deterministic jitter
(DJ) [4–7]. Similarly, these jitter sources smooth the ideal non-linear output of the MMPD
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and enable the gain of the MMPD to be linearized. Since RJ originates from device noise
such as thermal noise, flicker noise and shot noise, it is usually modeled as a Gaussian
distribution with zero-mean. In communication protocols, its standard deviation (STD)
is typically required to be less than 0.02 UI or even 0.01 UI. DJ is mainly composed of a
previous bits residual state, duty cycle distortion and sinusoidal jitter, which originate
from the lossy channel, mismatched rise and fall time, and spread spectrum clocking,
respectively.

Considering the entire data transmission process of n bits, the average output µ of the
MMPD represents the mean probability of detecting “late” or “early” for each bit:

µ =

n
∑

k=1

(
(1)Pr(late|dk|ϕ) + (−1)Pr(early|dk|ϕ)

)
n

(6)

where dk represents the k-th bit data, and ϕ represents the phase offset between the ideal
sampling phase and actual sampling phase.

For a 0-1 transition pattern, there are four cases if considering an additional 2 bits
before and after it, which include the “0011”, “1011”, “0010” and “1010” transition pattern.
So, Equation (6) can be written as:

µ = Pr(Ck) · (Pr(late|Ck|ϕ)− Pr(early|Ck|ϕ)) (7)

where Pr(Ck) is the probability of case k (k = 1, 2, 3, 4).
Assuming Gaussian jitter with zero-mean and standard deviation σ is added to the

phase error, as shown in Figure 5, we define ϕ f 1 as the fuzzy phase region for consecutive
transition patterns like the 0101 pattern or the third bit “1” in the 0010 pattern, and we
define ϕ f 2 as the fuzzy phase region for consecutive same data like the 0011 pattern or the
second bit “0” in the 0010 pattern. The fuzzy phase region is the phase offset between the
ideal sampling phase and the cross-point of the reference voltage and the transition edge.

1100

0ϕ 0ϕϕf2 -ϕf2

(a)

1101

0ϕ 0ϕf1 -ϕf2-ϕf1 ϕ

(b)

0100

0ϕ 0ϕϕf2 -ϕf1 ϕf1

(c)

0101

0ϕ 0ϕϕf1-ϕf1 ϕf1-ϕf1

(d)

Figure 5. Transition pattern with jitter injection (orange region: error signal is +1, blue region: error
signal is −1) (a) case 1: 0011 , (b) case 2: 1011, (c) case 3: 0010, (d) case 4: 1010.



Electronics 2024, 13, 4218 6 of 14

The probability of late Pr(late|ϕ) is equal to the product of the probability of ek = +1
multiplied by the probability of ek−1 = −1. For case 1, it is

Pr(late|ϕ|C1) =
∫ ∞

−ϕ f 2

1
σ
√

2π
e
−(x−ϕ)2

2σ2 dx ·
∫ ∞

ϕ f 2

1
σ
√

2π
e
−(x−ϕ)2

2σ2 dx. (8)

Let y = x−ϕ
σ ; then, we have

Pr(late|ϕ|C1) =
1√
2π

∫ ∞
−ϕ f 2−ϕ

σ

e−
y2
2 dy · 1√

2π

∫ ∞
ϕ f 2−ϕ

σ

e−
y2
2 dy

=Φ
(

ϕ f 2 + ϕ

σ

)
· Φ

(−ϕ f 2 + ϕ

σ

) (9)

where Φ(x) is the cumulative distribution function of the standard normal distribution.
The probability of early and probability of late in other cases can be calculated in a similar
way. For random data, the probability of the four cases mentioned is 1/16. In addition,
the analysis will be no different for an inverted data pattern. Substituting these four cases’
calculation results into Equation (7), we have

µ =
Φ
(

ϕ f 2+ϕ

σ

)
− Φ

(
ϕ f 2−ϕ

σ

)
4

, (10)

which is 0.25 if there is no jitter, being the same as we mentioned in Section 2.2.
There is no ϕ f 1 in Equation (10), which indicates that the transition before or after the

consecutive same data (00 or 11) actually plays a role in the MMPD. We give a qualitative
explanation here: when data continuously transition, ek and ek−1 will always be the same
(both are +1 or −1). Therefore, in case 1, there is one judgment for a phase late or early
in the transition and KDD is 1. In case 2, only an early phase can be judged, because ek
and ek−1 are −1 when the phase is late, which cannot be judged in a conventional MMPD.
Similarly, in case 3, only a late phase can be judged. So, KDD in case 2 and case 3 is 0.5.
The MMPD output is 0 in case 4, and its KDD is 0. Therefore, the average KDD is 0.5 for a
conventional MMPD. Without loss of generality, Equation (10) can be written as

µ = KTDKDD

(
Φ
(

ϕ f 2 + ϕ

σ

)
− Φ

(
ϕ f 2 − ϕ

σ

))
. (11)

For the pattern-based PD proposed in [12], KDD is 2 in case 1 because there are two
judgment outputs in the single transition. KDD also doubles in other cases, and the average
KDD is 1. So, the total output µ of the pattern-based PD is double that of a conventional
MMPD, which can also be derived by using the same method as Equation (10). In pursuit
of higher gain, we adopt a pattern-based PD in our system, and the MMPD mentioned
later refers to pattern-based PD unless otherwise specified.

So, the gain expression of the MMPD is

KMMPD =
∂µ

∂ϕ
=

KTDKDD√
2πσ

e
− 1

2

(
ϕ f 2+ϕ

σ

)2

+ e
− 1

2

(
ϕ f 2−ϕ

σ

)2. (12)

It can be proved that for a certain case, the maximum gain of the MMPD occurs at ϕ f 2 = 0
and ϕ = 0, which is

KMMPDmax =
2KTDKDD√

2πσ
=

1√
2πσ

. (13)

Equation (13) reveals that the maximum gain of the MMPD is determined by jitter only.
For ϕ f 2 ̸= 0 , the peak gain occurs at ϕ = 0 if σ ≥ ϕ f 2, and it moves to ϕ f 2 gradually as σ
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decreases. Figure 6 depicts the MMPD output and gain versus sampling phase error under
different σ for ϕ f 2 = 0.1UI. Figure 6b gives the peak value for each curve.
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Figure 6. (a) The MMPD output characteristic under different σ, (b) the MMPD gain under different σ.

In order to quantify the relationship between reference voltage and PD output, a
segmented linear function is employed to fit the waveform, from which the fuzzy phase is
derived as

ϕ f 2 =
Vavg − Vre f

k
, (14)

where Vavg is the amplitude of average crossing voltage at the intersection of 011 and 110
patterns, and the intersection instant is the ideal sampling phase

k =


Vavg

0.5UI
, Vre f ≤ Vavg

Vh − Vavg

0.5UI
, Vavg < Vre f ≤ Vh

(15)

and Vh is the average voltage of level “1” as shown in Figure 7.

Ideal samping phase

k1
k2

0.5UI

Vavg

0.5UI

Vh

Figure 7. Segmented linear function to fit the waveform.

Substituting (14) into (11) and (12), we have

µ = KTDKDD

(
Φ
(Vavg − Vre f + kϕ

kσ

)
− Φ

(Vavg − Vre f − kϕ

kσ

))
(16)

KMMPD =
KTDKDD√

2πσ

e
− 1

2

(
Vavg−Vre f +kϕ

kσ

)2

+ e
− 1

2

(
Vavg−Vre f −kϕ

kσ

)2. (17)
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To verify the expression, we establish a complete wireline transceiver system in Simulink.
In this system, Gaussian-distributed jitter, with a standard deviation σ of 0.1 UI, is intro-
duced into the input signal received by the receiver. By sweeping the sampling time of
the CDR recovery clock and monitoring the PD output signal, the output characteristic
curve is obtained, and the gain is the derivative of the output value with respect to the
sampling phase.

Figure 8 presents the comparison between calculated and simulated results with little
DJ. For comparisons with previous work, the results in [18] are also plotted. Figure 8a
depicts the MMPD output characteristic at different Vre f whose Vavg = Vh. The calculated
results are higher than the simulated because the fitting ϕ f 2 is always lower than the actual
value. As the analysis in [18], when |ϕ| < 0.1 UI, their calculation results are close to the
simulation results, and our calculation results at Vre f = 0.9Vavg, because ϕ f 2 is equal to the
drift bit width. However, when the phase error exceeds this range, our model matches
the simulation results better. Moreover, they do not give the calculation model under
different reference voltages. When the reference voltage setting is changed, the trend of
the calculation results of our model matches the simulation results. Figure 8b shows the
relationship between the MMPD peak gain and the Gaussian-distributed jitter σ at different
Vre f , from which it can be seen that the gain is inversely proportional to the Gaussian-
distributed jitter σ when Vre f = Vavg, and when the σ is large, peak gain under different
Vre f values will approach 1√

2πσ
, because the exponent in Equation (12) becomes closer to

0. In addition, Figure 8b shows that the gain calculated in [18] matches the simulation
results when the jitter is large, and the error is larger for smaller jitter. This is because it
only considers the gain at the phase error of 0, while for smaller jitter, the MMPD peak gain
dose not occur at this point, as shown in Figure 6, and our model shows better matching in
a wider range.
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Figure 8. (a) MMPD output characteristic at different Vre f and the calculation result in [18], (b) the
MMPD peak gain under different σ and the calculation result in [18].

Furthermore, to take DJ into account, the deterministic phase offset ϕD is added to ϕ
in Equation (11), which can be written as

µ = KTDKDD

(
Φ
(

ϕ f 2 + ϕ + ϕD

σ

)
− Φ

(
ϕ f 2 − ϕ − ϕD

σ

))
. (18)

Taking inter-symbol interference (ISI) as an example, the previous bits residual state affects
the current sampling voltage, which may cause different error signals in the MMPD. Define
the residual voltage as Vres; then, ϕD = Vres/k.

The input signal with ISI is simulated as the eye diagram shown in Figure 9 whose
Vh = 1.4Vavg and the range of crossing voltage at the intersection of the 011 and 110 patterns
is from 0.88 to 1.12Vavg. For simplicity, we simplify the probability distribution of the Vres
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into 25% of −0.09Vavg, 50% of 0 and 25% of +0.09Vavg. So, our modified fitting function in
this case can be written as

µ = KTDKDD

(
Φ
(Vavg − Vre f + Vres + kϕ

kσ

)
− Φ

(Vavg − Vre f − Vres − kϕ

kσ

))
Pr(Vres). (19)

Ideal samping phase

+Vref

0

-Vref

Ideal ϕf

Atcul  ϕf

Figure 9. Simulated eye diagram with rough equalization.

Figure 10 shows the calculated MMPD output results without or with modification
versus the simulated, from which we can find that calculations with modification fit the
simulation better than without modification when Vre f > Vavg, because the low slope
makes the PD more sensitive to Vre f , and the introduction of ISI reduces the sensitivity and
smooths the output curve. The difference is not significant when Vre f < Vavg, which may
be due to the high linearity of function within this range, and the effects of ISI with a mean
of 0 cancel out.

Figure 11 depicts the peak gain of the MMPD with ISI versus the Gaussian distribution
jitter σ under different Vre f before and after function modification, from which it can be
seen that the peak gain has significantly decreased at low σ, when Vre f is close to Vavg,
because the ISI introduces an equivalent ϕ f 2 which will never be zero.

It should be noted that for more severe ISI, estimating the distribution of Vres will
become complicated, and the deviation between the model calculation results and the
circuit simulation results may become too large if the estimation is inaccurate.
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Figure 10. MMPD output characteristic: (a) Vre f < Vh without modification, (b) Vre f > Vh without
modification, (c) Vre f < Vh with modification, (d) Vre f > Vh with modification.
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Figure 11. Peak gain of MMPD with ISI under different σ.

3. Small Signal Model of MM-CDR
3.1. The Architecture of MMPD-Based Digital CDR

When the ADC-based receiver is preferred in a high-speed wireline transceiver, the
digital CDR is a more attractive solution compared with the analog implementation.

The digital CDR loop which includes the MMPD, decimation block, frequency inte-
grator, phase integrator and phase interpolator is shown in Figure 12. In this work, the
data rate of the transceiver implemented in 28 nm CMOS is 32 Gb/s. The MMPD receives
64 lanes 500 Mb/s parallel sign data and sign error information. The decimation block is
used to reduce the baud rate phase error samples to a rate compatible with high-resolution
digital signal processing. The proportional path through KP combined with the integral
path through KI is used to filter the phase detector decisions. The phase interpolator uses a
multi-bit digital control bus to adjust the phase of the ADC sampling clocks.

 32Gb/s CDR

Figure 12. The architecture of 32 Gb/s MMPD-based digital CDR.
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3.2. Linearized Analysis of CDR System

In order to analyze the design of the digital CDR, the digital CDR needs to be linearly
modeled and the linearized model, equivalent to the structure in Figure 12, is shown in
Figure 13, where KPD is the gain of the MMPD, KD is the decimation gain, KP is the gain
of the proportional path, KI is the gain of the integral path, KPI is the gain of the phase
interpolator, and z−N is the delay of the digital CDR loop. These parameters are listed in
Table 2 and described in the following content.

KPD KD KP

KI
1

1 － z-1

1
1 － z-1

1
1 － z-1

1
1 － z-1 KPI

z-Nz-N

ϕOUT

ϕIN ϕE

Figure 13. The linearized model of 32 Gb/s MMPD-based digital CDR.

Table 2. Digital MM-CDR parameters.

Parameter Value

KPD
13.3, 9.4, 6.8 per UI under σ = 0.03 UI
10, 8.2, 5.2 per UI under σ = 0.04 UI

KD 0.54 × 64 = 34.56
KP 2−7

KI 2−12

KPI 1 UI / 25 bit
N 5

The values of KPD are obtained from the results shown in Figure 8b. We assume that
σ is equal to 0.03 UI and 0.04 UI to demonstrate the loop performance under different
Gaussian jitter. In order to verify the effect of reference voltage on the circuit performance,
different values are set to obtain their respective gains of the MMPD, as listed in Table 2.

We adopt voting to achieve decimation, since it is beneficial to reduce the latency
of the loop, and the decimation factor is 64. The voting gain KD can be obtained by
co-simulation with the MMPD, and the value of voting gain KD is around 0.54 when
Vre f = Vavg through simulation.

The values of KP and KI are programmable to meet various requirements of CDR loop
characteristics in different applications, such as the bandwidth of the CDR loop and the
range of frequency deviation tracking .

The parameter KPI corresponds to the resolution of the phase interpolator in units
of UI per bit, which is chosen as 5-bit in our system by considering the performance and
complexity of the circuit.

The performances of the CDR loop that we care about are mainly the jitter transfer
function and jitter tolerance (JTOL). The loop gain of this linearized model can be analyzed
as follows:

L
(

z−1
)
=

ϕOUT
ϕE

=
KPDKDKPI

1 − z−1

(
KP +

KI

1 − z−1

)
z−N . (20)

The expression of the jitter transfer function is

H
(

e−jω
)
=

ϕOUT
ϕIN

=
L
(
e−jω)

1 + L
(
e−jω

) . (21)

The CDR in this design needs to meet the JESD204C protocol with a BER requirement of
1 × 10−15, so the expression of JTOL is

JT
(

e−jω
)
=

ϕIN
ϕE

(
1 − 15.88σ

TUI

)
=

(
1 + L

(
e−jω

))(
1 − 15.88σ

TUI

)
. (22)



Electronics 2024, 13, 4218 12 of 14

4. Simulation Results

According to the linearization analysis of the MMPD and digital MM-CDR in Sections 2 and 3,
we perform jitter transfer function and jitter tolerance simulations on the digital MM-
CDR loop.

Figure 14a,b plot the jitter transfer function performance under Gaussian jitter standard
deviations of the 0.03 UI and 0.04 UI. It can be seen that the greater the gain of the MMPD,
the wider the bandwidth of jitter transfer function and the smaller the jitter peaking. It
can be observed that when σ equals 0.04 UI, the peaking takes on values of 2.65, 2.87, and
3.57 dB and the corresponding bandwidths are 14.9, 11.5, and 7.0 MHz. When σ is equal
to 0.03 UI, the gain of the MMPD is higher, resulting in better peaking and bandwidth
performance. The peaking takes on values of 2.54, 2.71, and 3.13 dB, and the corresponding
bandwidths are 21.7, 13.7, and 9.3 MHz.
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(b)
Figure 14. Jitter transfer function of digital MM-CDR under Gaussian jitter standard deviation of
(a) 0.03 UI and (b) 0.04 UI.

It can be seen from Figure 15a,b that all the settings meet the JESD204C jitter tolerance
limit. Whether σ is equal to 0.03 UI or 0.04 UI, the higher the gain of the MMPD, the greater
the margin of the JTOL. Although JTOLmin will be smaller, KP and KI can be adjusted to
improve it. When σ is equal to 0.04 UI, the minimum JTOL is 0.240 UI at 14.4 MHz, which is
far more than the 0.05 UI required by JESD204C protocol. JTOL remains around 0.32 UI for
the high-frequency condition above 100 MHz. When σ is equal to 0.03 UI, the lowest JTOL
is 0.299 UI at 17.1 MHz and JTOL remain around 0.48 UI for the high-frequency condition
above 100 MHz.
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Figure 15. Jitter tolerance of digital MM-CDR under Gaussian jitter standard deviation of (a) 0.03 UI
and (b) 0.04 UI.
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5. Conclusions

In this paper, we present a detailed analysis of the MM-CDR system, focusing on the
development of a linearized model for the MMPD. The analysis reveals that the reference
voltage in the MMPD plays a critical role in determining its gain and overall performance.
When the reference voltage is set equal to the amplitude of average crossing voltage at the
intersection of 011 and 110 patterns, the maximum MMPD gain and optimal JTOL can be
achieved, which is determined by the jitter in the system. We further extend the linearized
MMPD model into a complete MM-CDR system and evaluate its performance in simula-
tions. The results confirm that this system complies with the JESD204C standard [19] when
reference voltage is appropriate and can achieve better JTOL with a higher MMPD gain.

In summary, the proposed linearized model provides an effective approach for evalu-
ating and optimizing the MM-CDR system during the design stage. This method allows
for a more accurate prediction of system performance under various jitter conditions, pro-
viding valuable insights for the design of ADC-based wireline receivers in high-speed data
transmission systems.
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