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Abstract: Sparse autoencoders have recently produced dictionaries of high-dimensional
vectors corresponding to the universe of concepts represented by large language models.
We find that this concept universe has interesting structure at three levels: (1) The “atomic”
small-scale structure contains “crystals” whose faces are parallelograms or trapezoids,
generalizing well-known examples such as (man:woman::king:queen). We find that the quality
of such parallelograms and associated function vectors improves greatly when projecting
out global distractor directions such as word length, which is efficiently performed with
linear discriminant analysis. (2) The “brain” intermediate-scale structure has significant
spatial modularity; for example, math and code features form a “lobe” akin to functional
lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with
multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also
cluster together spatially far more than one would expect if feature geometry were random.
(3) The “galaxy”-scale large-scale structure of the feature point cloud is not isotropic, but
instead has a power law of eigenvalues with steepest slope in middle layers. We also
quantify how the clustering entropy depends on the layer.

Keywords: sparse coding; mechanistic interpretability; neural networks; large language
models; clustering

1. Introduction

While large language models (LLMs) now exhibit a variety of impressive abilities [1-3],
we largely do not understand the internal cognition that underlies the behavior of these
systems. This lack of transparency may pose a challenge for a variety of Al safety [4]
concerns. For instance, it may be difficult to tell whether seemingly benign model behavior
in any particular instance is sycophantic [5] or deceptive [6] without an analysis of the
internals of the system. Such “interpretability” analysis has already shown promise in
auditing Al systems [7] to identify misaligned goals [8]. As systems become more powerful,
there is a need for methods to further our understanding of the internal representations
and algorithms learned by these systems [9,10].

The past year has seen a breakthrough in understanding how large language models
work: sparse autoencoders (SAEs) have discovered large numbers of vectors (“features”) in
their activation space that can be interpreted as concepts [11-13]. These advances build on
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earlier studies applying sparse coding to artificial neural network representations [14-16],
and to earlier work in neuroscience on biological neural representations [17,18]. Underlying
this work is the idea that neural networks use sparse coding to represent concepts in their
activation space [19]. In particular, sparse autoencoders are motivated by the assumptions
that (1) networks compute a variety of “features” from their input, (2) features are repre-
sented as one-dimensional directions in activation space {d;}, (3) features are represented
simply by adding them to the network’s activations, so activation vectors take the form
Y. fid;, and (4) the coefficients f; are sparse—only a small subset of all possible features “fire”
at once. The combination of assumptions (2)—(4) has been called the Linear Representation
Hypothesis [20-22].

If these assumptions hold, we could automatically discover these features with sparse
dictionary learning. Sparse dictionary learning attempts to learn an overcomplete basis
(dictionary) {d;} such that vectors x from a given distribution can be represented as sparse
linear combinations of dictionary elements. Sparse autoencoders offer a simple approach
to sparse dictionary learning. Sparse autoencoders consist of a learnable encoder function
Enc, which maps vectors x € R" to a hidden latent representation f € R™, and a decoder
Dec, which maps latent f back to £ € R". The objective of the sparse autoencoder is to
accurately reconstruct the input x from a sparse latent representation, and they are trained
with gradient descent with a loss function like

L = ||x — Dec(Enc(x))|13 + Al| f]]o-

Sparse autoencoders use a linear decoder Dec(f) = W, f + by, so that the output of the SAE
can be interpreted as a linear combination of features: £ =} ; fIW;l + b;. In practice, hidden
latents discovered by sparse autoencoders tend to be more interpretable than neurons,
activating in more consistent contexts [11,12], suggesting that they may be learning the true
latents underlying the network’s computation. For Al safety, sparse autoencoders have
shown some preliminary success: Ref. [7] reports specially training an LLM to have a hidden
objective, and then challenging separate teams of researchers to identify this objective. One
team was able to quickly identify this objective by looking at sparse autoencoder features
that activated when the LLM was prompted to exhibit “potentially concerning behaviors”,
and then looking at examples in the training data where that same feature fired.

Although some early work motivating sparse autoencoders suggested that networks
would arrange features maximally spread apart (approximately orthogonal) [19], recent
works have suggested that features may have a more sophisticated geometric struc-
ture [13,22]. Recently, a large collection of SAEs have been made publicly available [23],
so it is timely to study their structure at various scales. Thus, the present paper examines
sparse autoencoder feature structure at three separate spatial scales, which we refer to
informally as the “atom”-scale, “brain”-scale, and “galaxy”-scale. These playful analogies
are not meant to be precise, but instead gesture at certain concepts and methods of analysis
from other fields which we apply to understanding language model feature structure. We
provide project code at https://github.com/ejmichaud/feature-geometry (accessed on
24 March 2025).

This paper is organized as follows. In Section 2, we summarize related work.
In Section 3, we investigate if the “atomic” small-scale structure contains “crystals”
whose faces are parallelograms or trapezoids, generalizing well-known examples such as
(man:woman::king:queen). In Section 4, we test if the “brain” intermediate-scale structure
has functional modularity akin to biological brains. In Section 5, we study the “galaxy”
large-scale structure of the feature point cloud, testing whether it is more interestingly
shaped and clustered than an isotropic Gaussian distribution, and conclude in Section 6.


https://github.com/ejmichaud/feature-geometry
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2. Related Work

Neural network geometry: Many past works have studied the geometry of neural
network activations. These works find that the intrinsic dimension of neural network
hidden states are much lower than the full model dimension [24], that nearby vectors in
activation space are semantically similar [25], and that at local minima well generalizing
neural network loss landscapes have many “flat” directions [26]. Other works study how
representations evolve through models; one hypotheses is “iterative inference”, which
claims that neural networks iteratively refine activations layer by layer [27,28]. A contrast-
ing hypothesis is a circuits view, which holds that information flows in discrete steps along
a directed acyclic graph through the model, and representations cleanly change between
steps [29]. Another work [30] found that representations of hierarchically related concepts
are orthogonal to each other while categorical concepts are represented as polytopes. Our
work is in the same vein as these earlier analysis, but differs in an important way because
we use the SAE basis, which represents the model’s atomic concept space instead of its
activation space.

SAE feature structure: Sparse autoencoders (SAEs) are a recent approach for discov-
ering interpretable language model features without supervision, although relatively few
works have examined SAE feature structure. Bricken et al. [12] and Templeton et al. [13]
both visualize SAE features with UMAP projections and notice that features tend to group
together in “neighborhoods” of related features, in contrast to the approximately orthogo-
nal geometry observed in the toy model of Elhage et al. [19]. Engels et al. [22] find examples
of SAE structure where multiple SAE features appear to reconstruct a multi-dimensional
feature with interesting geometry, and multiple authors have recently speculated that SAE
vectors might contain more important structures [31,32]. Bussmann et al. [33] suggest that
SAE features are in fact linear combinations of more atomic features, and discover these
more atomic latents with “meta SAEs”. Our discussion of crystal structure in SAE features
is related to this idea that seemingly atomic representations might be composed of more
atomic representations.

Semantically meaningful linear representations: Early work found that word em-
bedding methods such as GloVe and Word2vec contained directions encoding semantic
concepts, e.g., the well-known formula f(king) — f(man) + f(woman) = f(queen) [34-36].
More recent research has found similar evidence of linear representations in sequence
models trained only on next token prediction, including Othello board positions [37,38],
integer lattices [39], the truth value of assertions [40], and numeric quantities such as
longitude, latitude, birth year, and death year [41,42], inspiring the Linear Representation
Hypothesis (see above). Recent works have also found causal function vectors for in-context
learning [43—45]. These function vectors induce the model to perform a certain task when
added into the model’s hidden states. Our discussion of crystal structures builds upon
these previous works by finding these task vectors and parallelogram structures in sparse
autoencoder representations.

3. “Atom”-Scale: Crystal Structure

In this section, we search for what we term crystal structure in the point cloud of
SAE features. By this we mean geometric structure reflecting semantic relations between
concepts, generalizing the classic example of (a, b, ¢, d)=(man,woman king,queen) forming
an approximate parallelogram where b —a ~ d — c. This can be interpreted in terms of
two function vectors b — a and ¢ — a that turn male entities female and turn entities royal,
respectively. We also search for trapezoids with only one pair of parallel edgesb —axd — ¢
(corresponding to only one function vector); Figure 1 (right) shows such an example with
(a, b, ¢, d)=(Austria,Vienna,Switzerland,Bern), where the function vector can be interpreted
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as mapping countries to their capitals. Studying these crystal structures is important
because they provide insight into how LLMs internally represent semantic operations
and relational knowledge. For instance, function vectors help us assess the extent to
which semantic structures within models align with human intuition and language logic,
as explored in the recent literature [43,46].
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Figure 1. Parallelogram and trapezoid structure is revealed (left) when distractor dimensions were
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projected out from the activations using LDA. LDA results in tighter clusters of pairwise Gemma-2-2b
activation differences (right), where each cluster corresponds to a different semantic transformation.
Distractor features are defined as those that are not related to semantics of the text; for instance,
the first principal component of Gemma-2-2b’s Layer 0 activations (top left figure on the right panel)
represents word length. Parallelogram or trapezoid structures suggest that there is a unique direction
in the activation space that represents each semantic transformation.

We search for crystals by computing all pairwise difference vectors and clustering
them using the K-means algorithm [47], where the vectors could be either the original
model’s hidden state activations (model crystal) or SAE features” decoder vectors (SAE
crystal). We use Gemma-2-2b for the experiment. If there is a direction that represents each
semantic transformation, we expect each resulting cluster to correspond to each function
vector. In other words, any pair of difference vectors in a cluster will form a trapezoid or
parallelogram, depending on whether the difference vectors are normalized or not before
clustering (or, equivalently, whether we quantify similarity between two difference vectors
via Euclidean distance or cosine similarity).

Our initial search for SAE crystals found mostly noise. To investigate why, we decided
to focus on activations of the model’s early layer, where many SAE features correspond
to a single token. Since SAE feature vectors in the early layers are often closely related
to the corresponding model activations, we believed that studying the activations of
these early layers could help clarify why our initial crystal search primarily found noise.
Therefore, we studied Gemma-2-2b residual stream activations for previously reported
word — word function vectors from the dataset of [43]. Figure 1 illustrates that candidate
crystal quadruplets are typically far from being parallelograms or trapezoids. This is
consistent with multiple papers pointing out that (man,woman,king,queen) is not an
accurate parallelogram either.

We believe the reason to be the presence of what we term distractor features. We define
distractor features to be the features that are not related to semantics of the text. For
example, we find that the horizontal axis in Figure 1 (right) corresponds mainly to word
length (Appendix B, Figure A2), which is semantically irrelevant and wreaks havoc on the
trapezoid (left), since “Switzerland” is much longer than the other words. However, these
distractor features were not always interpretable; in some cases, it was difficult to associate
features with any clear linguistic property.

To eliminate such semantically irrelevant distractor vectors, we wish to project the
data onto a lower-dimensional subspace orthogonal to them. For the [43] dataset, we
accomplish this with linear discriminant analysis (LDA) [48], which projects onto signal-to-
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noise eigenmodes where “signal” and “noise” are defined as the covariance matrices of
inter-cluster variation and intra-cluster variation, respectively. Figure 1 illustrates that this
dramatically improves the cluster and trapezoid /parallelogram quality, highlighting that
distractor features can hide existing crystals.

4. “Brain”-Scale: Meso-Scale Modular Structure

We now zoom out and look for larger-scale structure. In particular, we investigate if
functionally similar groups of SAE features (which tend to fire together) are also geometrically
similar, forming “lobes” in the activation space. We refer to this analyis as “brain”-scale
because, in animal brains, functionally similar groups of neurons also typically cluster
together spatially. For example, Broca’s area is involved in speech production, the auditory
cortex processes sound, and the amygdala is primarily associated with processing emotions.
We are curious whether we can find analogous functional modularity in the SAE feature
space. While prior work has qualitatively observed that semantically related features are
spatially close via UMAP projections of features [12,13], we aim to more precisely quantify
the relationship between functional similarity and spatial similarity.

We test a variety of methods for automatically discovering such functional “lobes”
and for quantifying if they are spatially modular. We define a lobe partition as a partition
of the SAE feature point cloud into k subsets (“lobes”) that are computed without positional
information. Instead, we identify such lobes based on them being functionally related,
specifically, tending to fire together within a document.

To automatically identify functional lobes, we first compute a histogram of SAE feature
co-occurrences. We take Gemma-2-2b and pass documents from The Pile [49] through it.
In this section, we report results with a Layer 12 residual stream SAE with 16k features and
an average LO of 41. For this SAE, we record the features that fire (we count a feature i as
firing if its encoder assigns it a coefficient f; > 1). Features are counted as co-occurring if
they both fire within the same block of 256 tokens—this length provides a coarse “time
resolution” allowing us to find tokens that tend to fire together within the same document
rather than just at the same token. We use a max context length of 1024, and only use
one such context per document, giving us at most four blocks (and histogram updates)
per document of The Pile. We compute histograms across 50k documents. Given this
histogram, we compute an affinity score between each pair of SAE features based on their
co-occurrence statistics and perform spectral clustering on the resulting affinity matrix. We
use the spectral clustering implementation of scikit-learn [50] with default settings with
varying choice of n_clusters.

In Figure 2, we visualize lobes discovered with this method with n_clusters=2, 3
via a t-SNE projection [51]. For this figure, we used the “phi coefficent” as the measure of
co-occurrence similarity between features. We find that lobes visually appear to be spatially
localized. For instance, features which fire primarily on math and code documents tend to
cluster together spatially.

We experiment with the following notions of co-occurrence-based affinity: simple
matching coefficient, Jaccard similarity, Dice coefficient, overlap coefficient, and phi
coefficient, which can all be computed just from a co-occurrence histogram. In the
Section Co-Occurrence Measures, we review definitions for each of these and in Figure 3
illustrate how the choice between them affects the resulting lobe t-SNE plots. We also show
how lobes appear when we cluster based on geometry directly using cosine similarities,
as described below.



Entropy 2025, 27, 344

6 of 16

»
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Figure 2. Features in the SAE feature point cloud identified that tend to fire together within documents
are seen to also be geometrically co-located in functional “lobes”, here down-projected to 2D with
t-SNE with point size proportional to feature frequency. A 2-lobe partition (left) is seen to break
the point cloud into roughly equal parts, active on code/math documents and English language
documents, respectively. A 3-lobe partition (right) is seen to mainly subdivide the English lobe into a
part for short messages and dialogue (e.g., chat rooms and parliament proceedings) and one primarily
containing long-form scientific papers.

Cosine similarity Simple Matching Coefficient Jaccard

Figure 3. Comparison of the lobe partitions of the SAE point cloud discovered with different affinity
measures, with the same t-SNE projection as Figure 2. In the top left, we show clusters computed
from geometry, the cosine similarity between features as the affinity score for spectral clustering. All
other measures are based on whether SAE features co-occur (fire together) within 256-token blocks,
using different measures of affinity. Although the phi coefficient predicts spatial structure best, all
co-occurrence measures are seen to discover the code/math lobe.

While these plots show a qualitative relationship between co-occurrence and feature
geometry, we aim to quantify this relationship. Our null hypothesis is that functionally
similar points (of commonly co-occurring SAE features) are uniformly distributed through-
out the activation space, showing no spatial modularity. To quantify how statistically
significant this is, we use two approaches to rule out the null hypothesis:

1. While we can cluster features based on whether they co-occur, we can also perform
spectral clustering based on the cosine similarity between SAE feature decoder vectors.
So instead of feature affinity values being, e.g., their co-occurrence phi coefficient, affin-
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ity matrix values are instead computed simply from feature geometry as A;; = d; - d;.
Given a clustering of SAE features using cosine similarity and a clustering using
co-occurrence, we compute the mutual information between these two sets of labels.
In some sense, this measures the amount of information about geometric structure that
one obtains from knowing functional structure. We report the adjusted mutual infor-
mation [52] as implemented by scikit-learn [50], which corrects for chance agreements
between the clusters.

2. Another conceptually simple approach is to train models to predict which functional
lobe a feature is in from its geometry. To accomplish this, we take a given set of lobe
labels from our co-occurrence-based clustering, and train a logistic regression model
to predict these labels directly from the point positions, using an 80-20 train—test split
and reporting the balanced test accuracy of this classifier.

Figure 4 shows that for both measures, the phi coefficient gives the best correspondence
between functional lobes and feature geometry. To show that this is statistically significant,
we randomly permute the cluster labels from the cosine similarity-based clustering and
measure the adjusted mutual information. We also re-initialize the SAE feature decoder
directions from a random Gaussian and normalize, and then train logistic regression models
to predict functional lobe from these random feature directions. Figure 4 (bottom) shows
that both tests rule out the null hypothesis with high significance, at 954 and 74 standard
deviations, respectively, clearly demonstrating that the lobes we see are real and not a
statistical fluke.

= Phi
Overlap
SMC
Jaccard

o
N
1

Balanced test accuracy

© o o o
o N w ~
o w o (6]

1 1 1 1

Adjusted Mutual Information
o
-
1
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Figure 4. (top left): Adjusted mutual information between spatial clusters and functional (co-
occurrence-based) clusters. (top right): logistic regression balanced test accuracy, predicting co-
occurrence-based cluster label from position. (bottom left): Adjusted mutual information with
randomly permuted cosine similarity-based clustering labels. (bottom right): balanced test accuracy
with random unit-norm feature vectors. The statistical significance reported is for phi-based clustering

into lobes.

To assess what each lobe specializes in, we run 10k documents from The Pile through
Gemma-2-2b, and again record which SAE features at Layer 12 fire within blocks of
256 tokens. For each block of tokens, we record which lobe has the highest proportion of its
features firing. Each document in The Pile is attached with a name specifying the subset
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of the corpus that document is from. For each document type, for each 256-token block
within a document of that type, we record which lobe had the highest proportion of its
SAE features firing. Across thousands of documents, we can then look at a histogram of
which lobes were maximally activating across each document type. We show these results
for three lobes, computed with the phi coefficient as the co-occurrence measure, in Figure 5.
This forms the basis for our lobe labeling in Figure 2.

These findings raise interesting questions about whether individual sparse autoen-
coder features are the most natural units for understanding neural networks [53,54]. In bi-
ological brains, one can study individual neurons, groups of neurons, groups of groups
of neurons, and so on up to very large-scale structures, and it is not clear a priori what
“scale” of analysis will be most fruitful [55]. We may face a similar ambiguity with sparse
autoencoder features, since, as we have seen, groups of co-occurring, geometrically related
features can be interpretable and studied in their own right. This question, of whether there
is a right “scale” of analysis for SAE features, is made even more salient by the observation
in prior work of “feature splitting” [12].

Lobe Specialization by Document Type
1.0

Lobe
=
o
wv
Fraction

2
T T T T T T T T T T T T T T 0.0
O P @ & LN D N @ D P
& S & & &2 F O/\,q & O &
F T I FTLELe L FEL TE T LS
N P M R VISR N S S &
o® €T @ ST &
« & & & &S PR
Q X N Q
R ©

Figure 5. Fraction of contexts in which each lobe had the highest proportion of activating features.
For each document type, these fractions sum to 1 across the lobes. We see that lobe 2 typically
disproportionately activates on code and math documents. Lobe 0 and 1 activate on other documents,
with lobe 0 activating more on documents containing short text and dialogue (chat comments,
parliamentary proceedings) and lobe 1 activating more on scientific papers.

5. “Galaxy”-Scale: Large-Scale Point Cloud Structure

In this section, we further broaden our perspective to analyze the “galaxy”-scale
structure of the point cloud, focusing on its overall shape and clustering properties. This
analysis is loosely inspired by work in astronomy [56] characterizing the shape [57] and
substructure [58] of galaxies. We start by formulating a simple null hypothesis: The point
cloud is drawn from an isotropic multivariate Gaussian distribution.

To test this, we analyze the covariance of the data. As illustrated in Figure 6, the eigen-
value spectrum deviates from isotropy, meaning the cloud exhibits directional structure
rather than being purely spherical. Even within the first three principlal components,
the point cloud is anisotrophic, with some principal axes slightly wider than others.

To quantify these deviations, we analyze the eigenvalue spectrum of the covariance
matrix, comparing it to theoretical expectations from random matrix theory (RMT).
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Figure 6. Three-dimensional point cloud visualizations of top PCA components for the Gemma-2-2b
Layer 12 SAE features.

5.1. Shape Analysis

In RMT, the covariance matrix of N random vectors from a multivariate Gaussian
distribution follow a Wishart distribution [59]. Under this assumption, we would expect the
eigenvalues to be relatively uniform or to follow the Marcenko—Pastur law [60]. In contrast,
we observe a surprising derivation:

*  The eigenvalue spectrum of the point cloud decays as a power law rather than follow-
ing the expected Wishart behavior.

* Asshown in Figure 6, this power law decay is more pronounced in SAE features
compared to raw activations.

Since the abrupt drop off seen for the smallest eigenvalues is caused by limited data
and vanishes in the limit N — oo, we dimensionally reduce the point cloud to its 100 largest
principal components for all subsequent analysis in this section. We describe the shape
of this high-dimensional point cloud as resembling a “fractal cucumber”, whose width
in successive dimensions falls off like a power law. We find such power law scaling is
significantly less prominent for activations than for SAE features; it will be interesting for
further work to investigate its origins.

Figure 7 (left) shows how the slope of the aforementioned power law depends on LLM
layer, computed via linear regression against the 100 largest eigenvalues. We see a clear
pattern where middle layers have the steepest power law slopes: (Layer 12 has slope —0.47,
while early and late layers (e.g., Layers 0 and 24) have shallower slopes (—0.24 and —0.25),
respectively. This may hint that middle layers act as a bottleneck, compressing information
into fewer principal components, perhaps optimizing for more efficient representation of
high-level abstractions. Figure 7 (right) compares the eigenvalue spectra of SAE features
and neural activations, indicating a significantly steeper power law decay for SAE features.
Activations, in contrast, exhibit a much slower decay, indicating weaker power law behavior

and distinct geometric structures in the latent space. Figure 8 (left) explores the effective
cloud volume (the determinant of the covariance matrix) of the point cloud, quantified by
the log-determinant of the covariance matrix across layer. This volume variation further
reflects the layer-specific changes in the structure and complexity of the latent space.
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Figure 7. Eigenvalue distributions for SAE features and activations. Eigenvalues of the covariance
matrix for SAE features (left) and neural activations (right) decay approximately as a power law,
with slopes varying across layers. A scaled isotropic Gaussian spectrum is shown for comparison,
highlighting the significantly steeper decay for SAE features. Eigenvalue spectra for activations show
a much slower decay compared to SAE features, indicating weaker power law behavior and distinct
geometric structures.
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Figure 8. Layer-wise analysis of latent representations. (left): The power law slope () of the
eigenvalue spectrum (blue) and the log-determinant of the covariance matrix (green) vary across
layers. Both metrics peak in intermediate layers, indicating significant structural changes in the latent
space. (right): Estimated clustering entropy across layers with 95% confidence intervals. Middle
layers exhibit reduced clustering entropy, while earlier and later layers show higher entropy, reflecting
distributed and concentrated feature representations, respectively.

5.2. Clustering Analysis

Clustering of galaxies or microscopic particles is often quantified in terms of a power
spectrum or correlation function. This is complicated for our very high-dimensional data,
since the underlying density varies with radius and, for a high-dimensional Gaussian
distribution, is strongly concentrated around a relatively thin spherical shell. For this
reason, we instead quantify clustering by estimating the entropy of the distribution that
the point cloud is assumed to be sampled from. We estimate the entropy H from our
SAE feature point cloud using the k-th nearest neighbor (k-NN) method [61,62], computed
as follows,

log(ri+6) +log(n—1) —¥ 1)

™=

H d
features n 4

1

where r; is the distance to the k-th nearest neighbor for point 7, and d is the dimensionality
of the point cloud; n is the number of points; the constant ¥ is the digamma term from the
k-NN estimation. As a baseline, the Gaussian entropy represents the maximum possible
entropy for a given covariance matrix. For a Gaussian distribution with the same covariance
matrix, the entropy is computed as follows:

N

d
Hgauss = 5 (1 +log(27)) + ) log(A;) 2
i=1
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where A; are the eigenvalues of the covariance matrix. We define the clustering entropy
(often referred to as “negentropy” in physics as Hgquss — H, i.e., how much lower the
entropy is than its maximum allowed value).

The estimated clustering entropy is shown in Figure 8 (right), plotted across different
layers. The results indicate that the SAE point cloud is strongly clustered, particulary in the
middle layers. This observation aligns with the reduced clustering entropy seen at interme-
diate layers, suggesting significant structural differences in the latent representations.

In future work, it will be interesting to investigate whether these variations depend
mainly on the prominence of crystals or lobes in different layers, or have an altogether
different origin (entirely different underlying mechanisms).

6. Conclusions

We have searched for structure in the SAE concept universe at three levels: (1) The
“atomic” small-scale structure contains “crystals” whose faces are parallelograms or trape-
zoids, generalizing well-known examples such as (man:woman::king:queen), may be revealed
when projecting out semantically irrelevant distractor features. (2) The “brain” intermediate-
scale structure has significant spatial modularity; for example, math and code features
form a “lobe” akin to functional lobes seen in neural fMRI images. (3) The “galaxy” large-
scale structure of the feature point cloud is not isotropic, but instead has a power law of
eigenvalues with steepest slope in middle layers.

While we have observed that SAE features exhibit geometric structure at multiple
scales, we have not explained why this structure forms. We think that further work that
not only studies the structure of SAE features, but also seeks to explain the origin of this
structure, could be highly valuable. Such work may lead to refinements to our theory
of how networks represent features in superposition or to insights that improve sparse
autoencoder performance.

We hope that our findings serve as a stepping stone toward deeper understanding
of SAE features and the workings of large language models, and that this deeper under-
standing will eventually help to improve the safety of Al systems as they continue to grow
in power.
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Appendix A. Additional Information on Brain Lobes
Co-Occurrence Measures

Definitions of co-occurrence-based affinity measures: Let 7;; be the number of times
features i and j co-occur. Let m11 be number of times i and j co-occur, mgy be number of
times i and j both do not occur, 13y be number of times i occurs but j does not, 11, be


https://github.com/ejmichaud/feature-geometry
https://github.com/ejmichaud/feature-geometry

Entropy 2025, 27, 344

12 of 16

number of times i occurs and j either occurs or not, and so on. Then, the following can

be determined.
Jaccard similarity, Ref. [63], is as follows:

il nij

jy = 10l _
Toliugl o+ — g

Dice score, Ref. [64],is as follows:

2ling]  2n
i+ il nii+nyj

DSC;; =

The overlap coefficient is as follows:

linj] nij

overlap;; = =

min ([i], [j[)  min (m;, 1)

The simple matching coefficient is

moo + M11

SMC;j =

The phi coefficient, Ref. [65], is

mi1moo — M10Mo1

(PZ] B \/1M1eM1()e11le111e()

mog + myy1 + mo1 + Mmyg
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Figure Al. Histogram, over all features, of phi coefficient with k-th nearest cosine similarity neighbor
for (left) Layer 0 and (right) Layer 12. Each line represents a different k. The “random” line is plotted
by drawing a random feature for each feature, then computing the phi coefficient. Features with
higher cosine similarity have higher phi coefficients, but this is less pronounced in Layer 0 compared

to Layer 12.

Appendix B. Understanding Principal Components in Difference Space

Figure A2 shows that the first principal component encodes mainly the length differ-

ence between two words’ last tokens in Gemma-2-2b Layer 0.
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Figure A2. Plot of the first principal component in the difference space as a function of last token
length difference in Gemma-2-2b Layer 0. The linear relationship indicates that the first principal
component encodes the length difference between two words’ last tokens.
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Figure A3. Silhouette score, a measure of clustering quality, as a function of reduced dimension
in LDA. The plot indicates that training an affine transformation for semantic cluster separation is
easier in middle layers (Layer 12), where the model starts to develop concept-level understanding of
the input.

Appendix C. Breaking Down SAE Vectors by PCA Component

An additional investigation of structure we undertake is quantifying how SAE vectors
are distributed throughout the PCA components of the activations vectors. To accomplish
this, we define a PCA score:

1
PCA score(feature;) = - N (pcai@featurej)z
i

This metric is a weighted sum between 0 and 1 measuring approximately where in the PCA
each SAE feature lies. In Figure A4, we plot this metric on a single Gemma Scope SAE (the
results look similar on all Gemma Scope SAEs), and we see that there is an intriguing dip
into earlier PCA features in the last third of SAE features.
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Figure A4. Smoothed PCA scores for each SAE feature of Layer 12, width 16k , Ly = 176 Gemma
Scope 2b SAE, sorted by frequency. PCA score = % Yi*(pca;,@ featurej)z, where 1 is the number of
PCA features. The smoothed curves just average this somewhat noisy metric over adjacent sorted
features. This measures approximately where in the PCA each SAE feature lies, and shows that there
is a dip into earlier PCA features in the last third of SAE features.
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