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Abstract: Livestock production is under increasing scrutiny as a component of the food supply chain
with a large impact on greenhouse gas emissions. Amidst growing calls to reduce industrial ruminant
production, there is room to consider differences in meat quality and nutritional benefits of organic
and/or pasture-based management systems. Access to forage, whether fresh or conserved, is a key
influencing factor for meat fatty acid profile, and there is increasing evidence that pasture access is
particularly beneficial for meat’s nutritional quality. These composition differences ultimately impact
nutrient supply to consumers of conventional, organic and grass-fed meat. For this review, predicted
fatty acid supply from three consumption scenarios were modelled: i. average UK population
National Diet and Nutrition Survey (NDNS) (<128 g/week) red meat consumption, ii. red meat
consumption suggested by the UK National Health Service (NHS) (<490 g/week) and iii. red
meat consumption suggested by the Eat Lancet Report (<98 g/week). The results indicate average
consumers would receive more of the beneficial fatty acids for human health (especially the essential
omega-3, alpha-linolenic acid) from pasture-fed beef, produced either organically or conventionally.

Keywords: ruminant nutrition; fatty acids; nutritional quality; organic; pasture-fed; conventional

1. Introduction

Consumer awareness of the environmental impacts of ruminant production has grown
over the past two decades [1]. Although global demand for meat is predicted to increase by
1.3% per year up to 2050, this is a lower growth rate than previous periods, likely affected by
slower population growth and modest expected increases in per capita meat consumption
in the Global North [2]. Greenhouse gas (GHG) emissions from livestock supply chains are
estimated to represent 14.5% of all ‘human-induced’ emissions, with beef cattle producing
3 Gt CO2 equivalents [3–5]. Research rhetoric focused on mitigating the impacts of climate
change emphasise that moving to plant-based diets will reduce GHG emissions. This
appears to be led by the International Panel on Climate Change (IPCC) [6] and supported
by interest-group-funded research, such as the Lancet commissioned report on ‘healthy
diets from sustainable food systems’ [7]. Vegetarianism and veganism are rising in the UK
and many other countries in the Global North, not only in food sales but also in participation
in campaigns to reduce consumption of meat and other animal food products [8]. Notably,
in behaviour analysis of UK participants in vegan and meat-reduction campaigns, red
meat is the most likely product for planned reductions and abstentions [8]. Limitations
to red meat consumption have also been recommended by nutritional guidelines based
on epidemiological meta-analyses showing ‘probable’ evidence that increased red meat
consumption increases the risk of colorectal cancer and premature death [9].

Though many interest groups point to plant-based diets to combat the environmental
consequences of industrial meat production, organic and grass-fed meat are realistic but
lesser-discussed alternatives. Consumer demand for organic meat has slowed in recent
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years, from growth periods centred around 2008 [10]. Although the overall value of organic
beef sales decreased in the US between the 2014 and 2019 organic agriculture census [11], the
number of organically reared cattle in the UK has remained stable from 2019–2020 [10]. Even
as organic makes up a minor proportion of total livestock production (3.2% of the total UK
beef cattle population is organic [10]), organic animal agriculture is still often grouped with
all livestock production in assessing GHG emissions [3,4]. A 2020 Nature article analysing
the external climate costs of food determined that external GHG costs are highest for both
conventional and organic animal-based products (including eggs, poultry, ruminants and
pork) compared to milk and plant-based foods [12]. Despite this grouping of all animal
agriculture as ecologically unsustainable, there are clearly differences in environmental
impact between production systems [5,13,14], especially when considering impacts beyond
emissions, including biodiversity [13,15], soil health [13,16] and energy/land use [13].

While a shift to more plant-based diets seems inevitable, there is also evidence that
animal products will continue to be staples in many diets worldwide [17], and ruminant
meat is incredibly nutrient dense, a good source of high-quality protein, with beneficial
fatty acids and important micronutrients [18,19]. As already noted, global consumption of
meat products is expected to grow, and there is clear evidence that while meat consumption
initially increases with income (as in China and Brazil), there is a point at which high income
actually contributes to lower meat consumption (evident in Denmark and France) [20].
Beyond economics, there are also many political, institutional, cultural and social factors
affecting consumption habits in different countries [17,21,22], but the fact remains that red
meat is an important source of nutrition [18,19]. As the globe grapples with the necessity for
sustainable food production, considering the impact of management practices on nutritional
quality is increasingly valuable.

This paper aims to review the current literature and explore whether organic and/or
pasture-reared beef confers nutritional benefits over conventionally produced beef.

2. Beef Production Principles and Standards

Standards for ruminant meat production vary regionally and within different coun-
tries. These range from governmental food standards and animal welfare legislation to
standard certification bodies, which include, but are not limited to, organic standards.
These standards are regulated and often offer the farmer a premium above the average
market price. However, there are also values that farmers may hold themselves accountable
to, such as low-input, sustainable, regenerative, agroecological or conservation. These prin-
ciples are not regulated but may give farmers a premium depending on their market. As the
details of specific certification schemes and management principles vary greatly globally,
this study will focus on describing different management standards that influence beef’s
nutritional properties, using examples of standards from the UK and the European Union.

2.1. Concentrate vs. Forage-Based Diets

Traditionally, the ruminant diet has come from grazing pasture, as their digestive
systems have evolved to use forage. Modern industrialised meat production (defined
by higher stocking rates and breeding for rapid growth) requires higher proportions of
concentrate feed, including increased protein consumption, to allow for quick turnover
to slaughter-weight of prime animals. However, ruminant digestion remains most suited
to forage-based diets [23] and the nutritional quality of meat is impacted by animal nutri-
tion [19,24,25]. This push-pull of a forage-based diet vs. increased productivity highlights
key differences between ruminant livestock standards.

Baseline standards for animal welfare in the UK include the government welfare
codes and the Royal Society for the Prevention of Cruelty to Animals (RSPCA), which both
emphasise that livestock must be fed a diet appropriate to their species, which satisfies
nutritional needs and maintains good health [26,27]. The provisions of these kinds of
standards do not dictate a certain proportion of diet from forage, but suggest that animals
should spend time outdoors with access to pasture provided they have adequate food,
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water and shelter. The ‘Five Freedoms’ of welfare standards in the UK include ‘freedom
to express normal behaviour’, which is further dictated by stocking densities (10–12 ani-
mals/acre for cattle), minimum indoor lying areas and access to pasture that does not cause
harm [26]. Non-organic standards for livestock typically do not dictate a minimum outdoor
access requirement. For example, the UK Red Tractor certification focuses on providing
comfortable, hygienic and sufficient housing/shelter as well as a suitable diet, but does not
specify outdoor access as essential or a minimum requirement for forage-based feed [28].

Under organic standards, the importance of grazing and forage intake (when pasture
is not available) is made more explicit, as well as specific regulations for feed sourcing.
EU regulations for organic livestock management require that animals have access to
open air or grazing areas whenever possible and only consume organically produced feed
(concentrate or forage) [29]. In some countries, as in the UK, organic standards are even
more specific, stating a minimum of at least 60% of ruminant diets must be fresh/dried
fodder, roughage or silage [30,31].

An additional category of livestock management standard that has become more
common over the past decade focuses specifically on access to pasture and forage feeding.
Based on the requirements for certification, farmers meeting these standards may or may
not be organic and/or qualify for other quality assurance schemes. The Pasture for Life
Certification Mark of the Pasture-Fed Livestock Association (PFLA) (in the UK) specifically
emphasises management based exclusively on pasture, explicitly stating that zero-grazing
systems (feeding cut grass to housed animals) are prohibited and that livestock must be
maintained outdoors on pasture [32]. Specifically, the PFLA requires that livestock must
be maintained on rotation pastures, permanent pasture, fields of forage crops or on the
unbroken ground at all times except for over-winter periods, under conditions leading
to soil damage and/or risk animal welfare or following community/national biosecurity
requirements [32]. Many PFLA farmers may also be certified organic, but the scheme does
not specify that forage must be certified organic, which means that non-organic farmers
can also qualify based on their pasture and forage management practices.

2.2. Definitions for Feeding Systems in the Present Paper

For the purposes of the analysis in this review, which covers studies in countries with
varying standards, the different feeding systems will be categorised as one of the following:

• Intensive (INT) refers to conventional management with extremely limited access to
preserved forage (excluding cereal straw, which is often the main ‘forage’ in the diet),
animals are fed ad-lib concentrate feeds to appetite (typically composed of soya, grains
and molasses) and kept exclusively indoors or in feedlots.

• Conventional (CON) refers to non-organic management adhering to country-specific
animal welfare standards, but otherwise not restricted by regulations for minimum
proportion of forage in diet (majority concentrate feeding, but typically ~30% roughage
or forage- could be mixed crop, grass or maize) and/or outdoor access.

• Organic (ORG) refers to management adhering to country-specific standards, includ-
ing organically certified feed (concentrate, silage or hay and pasture). Any other feed
requirements regarding forage consumption are specified based on source material.

• Pasture-based (PB) refers to management centred on access to pasture/forage, includ-
ing: 100% forage feeding with most consumed by grazing. Unless otherwise stated,
PB is used to discuss cattle that have been reared and finished on pasture/forage.

When referencing specific studies throughout this review, the terminology and feed
system described in each paper will be used, which means that in some cases ‘grass-fed’ is
defined by the referenced study, and is not necessarily 100% pasture-based (PB) as outlined
above. There is a wide diversity of finishing systems within the beef industry that impact
lipid content and fatty acid profile, for example, pasture-reared but intensively finished
(often used in suckler systems, with varying finishing times) [33,34]. Additionally, the
composition of preserved forage can also impact beef fat composition, mainly in comparing
maize vs. grass silage [35]. We recognise that additional factors related to feeding systems
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impact fatty acid profile, but for the purposes of this paper have focused our attention on
the definitions specified in this section.

3. Beef Quality

The quality of animal-source products, as perceived by consumers, is evolving and
includes several drivers. Consumers are not only interested in flavour, shape and tenderness
but also origin, potential impact on health, brand and antibiotic use [36,37]. Prache et al. [9]
define seven animal-source product attributes: (i) Sensory, (ii) Nutritional, (iii) Image,
(iv) Convenience, (v) Safety, (vi) Technological, (vii) Commercial. In this review, quality
focuses on nutrition-relevant fatty acids (nutritional), in the context of meeting nutrition
guidelines and potential impacts on human health (and safety).

According to the McCance and Widdowson’s composition of foods integrated dataset,
an indicative beef nutrient composition (average from 23 different cuts in the database)
would be approximately 68.5% water, 20.9% protein and 9.5% fat; translating to 58.6% water,
29.4% protein and 10.6% fat when these cuts are cooked [38]. Meat is generally considered
a key source of protein, especially essential amino acids, which cannot be synthesised in the
human body [19,25]. Global figures indicate that all meat provides 20–40% of protein intake
in the human diet, and in most countries in the Global North, average protein consumption
provides more than the minimum requirement needed for good health [25]. Red meat, in
particular, contains high-value protein, including all eight essential amino acids required
by adults and all nine amino acids required by children [19]. Current evidence suggests
protein quantity is very similar between organic and conventionally produced meat [39,40];
however, the fat content of meat is much more variable than protein, as there is a stronger
influence of animal type and production factors. Nutritionally, fat provides rich sources
of energy, but also essential vitamins and fatty acids and contributes to palatability and
flavour [25].

In meat, there are three fat categories: (i) inter-muscular, occurring between the
muscles; (ii) intra-muscular (IM) fat, commonly known as ‘marbling’; (iii) subcutaneous
(SC) fat, the deposition layer between skin and muscle [25]. This paper focuses on the most
commonly consumed fat, IM fat. The amount of fat and the fatty acid profile in IM fat is
driven by diet [41], with clear differences based on breeds [41,42], slaughter age [41,43],
nutrition [41] and between muscle types [40,44]. As marbling is affected by all these factors,
including country-specific consumer preferences, IM fat content in beef varies, with high
percentages in the US (up to 11%) and Japan (20%) and lower amounts in France (up to
6%) [45]. A review of intramuscular fat content and properties by Park et al. [41] presents a
range in IM fat from 1.9% in Brahman cattle in the Philippines [46] to 37.8% in Japanese
Wagyu beef [47]. Higher IM fat content is associated with high concentrate diets compared
with low concentrate diets [41,43], including higher IM fat content in feedlot finished
compared with grass-finished beef [48].

4. Fatty Acids

Dietary fat is mostly (99%) comprised of acyl-glycerols and phospholipids and all
fat from food consumed will have varying amounts and types of fatty acids (FAs). Fatty
acids are carboxylic acids classified by the length of their carbon chains, whether they have
double bonds and the configuration of the hydrogen atom [49]. The main categories of
fatty acids in beef are: saturated fatty acids (SFA, approximately 46% of total raw, lean
IM FA) with no double bonds, monounsaturated fatty acids (MUFA, approximately 46%
of total raw, lean IM FA) with one double bond and polyunsaturated fatty acids (PUFA,
approximately 7% of total raw, lean IM FA) with two or more double bonds [38]. Early
dietary guidance grouped and researched FAs of the same class (e.g., SFAs), whereas more
recent research has studied the impact of individual FAs (e.g., linoleic acid) for their effect
on human health. While this approach is reasonable in a research context, explaining the
health impacts of individual fatty acids to consumers would be a confusing approach to
nutrition, and instead well-rounded dietary advice from FAs is recommended [50]. Many



Foods 2022, 11, 646 5 of 19

FAs are recognised as having positive and/or negative health outcomes for consumers
and in some cases, the relative concentrations or ratios of one to another may be of more
importance than absolute intakes [51].

4.1. Saturated Fatty Acids

Saturated FAs have historically all been considered undesirable in the human diet [52].
The main SFAs in ruminant meat products are: myristic (C14:0), palmitic (C16:0) and
stearic (C18:0) acids. Some SFAs (lauric, myristic and palmitic) have been shown to have
cholesterol-increasing properties, which are an indicator of coronary heart disease (CHD)
risk [53]. Generally, elevated low-density lipoprotein cholesterol (LDL-C) is associated with
a higher risk of heart/artery disease than high-density lipoprotein cholesterol (HDL-C),
which is protective [54,55]. The links and mechanisms between SFA, cholesterol and CHD
are complicated and often conflicting, as individual SFA have been linked to positive,
neutral and negative effects on heart disease [53]. Forouhi et al. [56] found even chain
SFAs (C14:0, C16:0 and C18:0) were positively associated, while odd chain SFAs (C15:0
and C17:0) (of rumen origin and found in minor concentrations) were inversely associated
with the incidence of Type 2 diabetes. Khaw et al. [57] also reported even chain SFAs were
positively associated with CHD risk. It is clear not all SFAs affect human health uniformly,
suggesting that further subgrouping and identifying specific functions of individual FAs
can help identify risk factors for human health.

4.2. Monounsaturated Fatty Acids

Monounsaturated FAs have one double bond somewhere along the carbon chain
with the ‘remaining’ hydrogen in either the cis or trans configuration, as demonstrated in
oleic (OA, c9 C18:1) and vaccenic (VA, t11 C18:1) acids, respectively. Oleic acid is the most
abundant MUFA in beef and is commonly found in animal fats, olive oil, nuts and avocados,
while VA is solely found in ruminant fats [58,59]. Meta-analyses have shown that replacing
SFAs with cis-MUFAs can reduce LDL and increase HDL (small effect size) [53,60], although
this could be due to the reduction in SFAs rather than an increase in OA. Another meta-
analysis, which did not distinguish between cis- and trans-MUFAs, found no difference
in health outcomes between the FAs consumed [61] and Vafeidou et al. [62] reported a
reduced risk of cardiovascular disease when SFAs are replaced with MUFAs, although this
mechanism is not yet fully understood. If studies reduce specific FAs and replace them with
other FAs, is it the reduction in SFA content or the replacement that is responsible? The
answer to this question is still unclear and since the proportion of all FAs and FA groups
are interlinked (all expressed as a proportion of their total), considering them in isolation
does not always provide clear guidance.

The main trans fatty acid (TFA) in beef is the MUFA VA (t11 C18:1), whereas the
predominant trans FA in industrially hardened, hydrogenated oils is the MUFA elaidic
acid (t9 C18:1), an important distinction because their metabolism is different [63]. There
are many health concerns surrounding TFAs, including associations with increased risk
of CHD, obesity and insulin resistance [64]. Vaccenic acid is metabolised to rumenic acid
(c9t11 CLA; CLA9) (discussed below), which is beneficial for human health, in the adipose
tissue of both animals and humans, whereas elaidic acid has been closely linked to CHD,
steatohepatitis and obesity [65]. The naturally occurring TFAs found in meat may not be
harmful [66] but due to the challenges of isolating TFAs and examining their direct effect on
human health, the UK recommendation is no more than 2% of dietary energy intake should
come from TFAs [67]; however, the evidence does not point towards ruminant-derived
TFAs (VA) negatively impacting human health, and in particular, health benefits have been
reported as a result of VA consumption [58].

4.3. Polyunsaturated Fatty Acids

Polyunsaturated fatty acid (PUFA) research has become very popular in human
nutrition. PUFAs are categorised as having more than one double bond and most are
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classified into two main groups: omega-3 (n-3) FAs have a double bond between the third
and fourth carbon from the end methyl group, and omega-6 (n-6) FAs have a double bond
between the sixth and seventh carbon from the end methyl group [68]. Many FAs can be
metabolised and synthesised by the human body, but there are two main essential PUFAs
that must come from the diet: n-3 α-linolenic acid (ALA) and n-6 linoleic acid (LA) [50,68].
Interventional and observational studies demonstrate that replacing SFAs in the diet with
PUFAs significantly reduces cardiovascular disease (CVD) risk [52,62,69].

4.3.1. Omega-3 Fatty Acids

The main omega-3 PUFA is the essential ALA, which metabolises to the long-chain FAs
(LCFAs with chains of >18 C) eicosapentaenoic acid (EPA, C20:5), docosapentaenoic acid
(DPA, C22:5) and docosahexaenoic acid (DHA, C22:6) (n-3 FAs with more than 20 carbons).
DHA is an important part of all cell and organelle membranes and is found in the brain and
retina [70]. LCFAs are found in fish and fish oil products and in much smaller quantities in
meat, eggs and dairy. Research suggests that conversion of ALA to EPA, DPA and DHA
is very limited (1–8% ALA converted to EPA depending on the method of analysis and
LA concentration in diet) [51,71,72], signifying the importance of getting these nutrients
directly from the diet [73]. In the Global North, the typical consumption of ALA and
LCFAs is below recommended levels [74]. Many countries recommend 500 mg LCFA per
day, yet average populations often do not consume half of that recommendation, as is the
case in seven European countries (~239 mg) [75], including Germany (~160 mg) [76,77].
These FAs are vital for foetal development [78], healthy aging and neuro-development
and neuro-degeneration [79], controlling inflammation, FA metabolism and may have a
protective role against CVD [80] and prevent some cancers [81]. In recent history, there
has been a decline in n-3 consumption (generally, eating less fish, pasture raised ruminant
produce and nuts and seeds) in the Global North [82], yet this research highlights the
benefits of consuming a diet rich in n-3 FAs overall.

4.3.2. Omega-6 Fatty Acids

The most prevalent n-6 in animal and human diets is the essential linoleic acid (LA),
found in plants and seeds and metabolised to the long-chain FA arachidonic acid (AA)
(abundant in muscle and specifically ruminant products) [50]. LA is important for skin
barrier function [83], whilst AA has an important role in brain development and func-
tion [84] and synthesis of eicosanoids [80]. These FAs are generally proinflammatory [85],
which helps to defend against pathogens, but if there is a loss in the regulation of inflam-
mation, disease can occur [80]. In modern diets in the Global North, consumption of n-6
has risen sharply over the previous 150 years with the increased use of vegetable oils and
cereal grains (along with a decrease in fresh vegetables) [86]. This over-consumption of
n-6 and under-consumption of n-3 has potentially led to inflammatory processes, linked
to an increase in diabetes, obesity and atherosclerosis [87,88]; however, replacing SFAs
with LA has been shown to lower blood cholesterol and LDL [53], suggesting that LA
could lower CVD when replacing SFAs. Adding to the complications of defining health
impacts of omega-6 FAs, Chowdhury et al. [61] found no association that n-6 intake affected
CHD risk. Despite this, some eicosanoids promote tumour growth, which is speculated to
be in response to increased AA levels, but the conversion of LA to AA is extremely low
(around 0.5%) [89]. Ultimately, LA is an essential FA and current research suggests that any
increase in consumption of PUFAs is advantageous and reducing overall n-6 consumption
is not advised.

4.3.3. Omega-6:Omega-3 Ratios

Linoleic acid and alpha-linolenic acid share a complement and competitive metabolic
pathway [90], with reactions mediated by the same enzymes [91]. Due to this competition
for metabolism enzymes, the ratio of n-6:n-3 (and specifically LA:ALA) is important. No-
tably, LA metabolising to AA tends to take priority over the ALA to EPA, DPA and DHA
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pathway [92], again, making the relative ratio an important aspect of animal and human
nutrition and health, since high LA intakes dominate the shared enzymes responsible for
n-3 LCFA synthesis.

Typical diets in the Global North have an n-6:n-3 ratio ranging from 7:1 to 20:1, far
from the 1:1, which is thought to have been the norm during human evolution [50,93].
Historically, n-3 came from fish, meat and dairy (reared on pasture), eggs, leafy green
vegetables, nuts and berries, but their consumption has decreased whilst n-6 consumption
has increased [86], as described in the previous section. There is increasing evidence this
excess LA consumption and increase in dietary n-6:n-3 ratio has contributed to the rise in
obesity, atherosclerosis and diabetes [85,87,88]. The imbalance in this ratio towards n-6
is also highly proinflammatory and prothrombotic [88]; therefore, working towards an
n-6:n-3 ratio between 1:1 up to 4:1, over the whole diet, is considered beneficial for human
health [86]; however, much of this evidence seems to be based on pathways rather than
robust dietary intervention trials or long-term health studies. At least for now, the evidence
does not suggest that n-6 consumption should decrease; however, raising consumers’
dietary n-3 would increase total PUFA intake (preferably by replacing SFAs) and decrease
the n-6:n-3 ratio.

4.3.4. CLA

A group of linoleic acid isomers is conjugated (CLAs) (having double bonds on
adjacent carbon atoms), the most abundant being CLA9, which is mainly found in ruminant
milk and meat, together making around 90% of human intake [94]. Technically, although
they contain trans- bonds, they also have a cis- double bond and are mostly omitted from the
trans-fat category [74]. CLA9 has attracted attention due to identified anti-cancer properties
and health benefits associated with the immune system and cardiovascular health [95,96] as
well as the potential to reduce adiposity [97]. Much of the research examines pathways and
mechanisms or discusses studies based on animal models (predominantly mice); however,
Dilzer and Park [98] reviewed studies involving humans and Yang et al. [99] reviewed
health and mechanistic studies, both concluding there is evidence of health benefits from
CLA, but the observed effects are larger in mice and more research is needed to understand
the dose effect in humans.

5. Origins of Fatty Acids in Meat

The ruminant diet is predominantly (up to 70% of dry matter) carbohydrates (fibre,
starch and some sugar), which is broken down in the rumen to simple sugars and converted
to pyruvate [100]. Pyruvate is then converted to the volatile fatty acids (VFAs) acetate,
propionate and butyrate (and carbon dioxide and methane) in the rumen [100]. The relative
proportion of the VFAs is influenced by the animal’s diet and time elapsed since the previ-
ous meal [100]. For example, fibrous forages create more acetate, whereas more digestible
forages increase the concentration of propionate [100]; however, when concentrates make
up a high proportion of the diet, as with intensive beef, propionate increases at the expense
of acetate [100]. These energy-providing fermentation end-products are essential for a
healthy rumen; acetate and butyrate are then used for de novo fat synthesis and propionate
is used for glucose [23].

Additionally, lipids are a small but important component of the ruminant diet (up to
8% of dry matter). The FA profile of forages (such as grasses and clovers) are dominated by
ALA (~62% of the total), LA (~20%) and palmitic acid (C16:0) (~17%), which combine to
~93% of the profile, though the relative proportion in different forages is variable [101,102].
In contrast, grain lipids (such as cereals and oilseeds in concentrate feeds) have a higher
proportion of LA (~58%) compared to ALA (~4%) and palmitic acid (~20%) [103,104]. In
one study using Aberdeen Angus steers slaughtered at 14 months, meat LA concentration
was higher in the cattle fed concentrate compared to grass silage (119 vs. 46.6 mg/100 g IM),
whilst the opposite was true for ALA content (4.0 vs. 20.6 mg/100 g IM) [42]. This, in part,
is due to the different fatty acids entering the rumen but also rumen retention. Concentrate-
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based LA-rich diets contain smaller particles that pass through the rumen faster than forage
diets, decreasing the time spent in the rumen and limiting biohydrogenation resulting in
more LA leaving the rumen [43]. The uptake and metabolism of dietary FAs into FAs in the
muscle tissue have been in detailed illustrated in previous work [105]. Both carbohydrates
and lipid sources, influenced by feeds in the diet, will have an impact on the FA profile
of meat, directly via the FAs supplied and indirectly from rumen fermentation and VFAs
produced [106]. This indicates that ruminant nutrition can be a tool to enhance meat
FA profiles.

The rumen bacteria and protozoa hydrolyse esterified fat into unsaturated free fatty
acids, phospholipids and glycolipids (and other organic compounds) [107]. Then, most
unsaturated FAs are bio-hydrogenated, resulting in mostly saturated free FAs leaving the
rumen, ultimately predominantly palmitic (C16:0) and stearic acid (C18:0) [108]. Despite
this, intermediate pathways give rise to many, more minor, FAs [109]. The enzyme stearoyl
Co-A desaturase in adipose tissue has been well studied for its action in converting VA to
CLA9 and oleic acid (c9 C18:1) from stearic acid (C18:0) [37,43]. There is some evidence
that the essential fatty acids are favourably stored in the IM fat over SC, potentially due to
their metabolic roles [42]. This further emphasises the nutritional variability potential of
beef fat.

6. Effect of Feed System on Meat Fatty Acid Profile
6.1. Saturated Fatty Acids

Despite potential protective effects, ruminant meat is a major contributor to SFA intake.
The average UK adult intake of SFAs is 13.1% (aged 65–74 years) and 14.6% (aged 75 years
and older) of total energy intake, which is higher than the recommended daily allowance
of <11% [110,111]. Whilst SFA consumption needs to be reduced, addressing this through
meat consumption habits is complicated. Organic meat is inconsistently different from
conventional meat with regards to SFAs, potentially based on the within-system variation
in the amount of forage in diets or the degree of animal fatness, as organic or grass-fed beef
is frequently leaner than conventional beef or beef from intensive systems [39,112]. Ribas-
Agustí et al. [40] found organic retail beef has 8% fewer SFAs compared with conventional
beef and Bjorklund et al. [113] reported organic beef had 23% fewer SFAs than conventional
beef from steers of the same breed. One study differentiating pasture-based and non-
pasture systems for Angus heifers, found grass-finished cooked beef had 30% fewer SFAs
compared to concentrate finished beef [114]. Additionally, the review by Daley et al. [115]
reports no difference in total SFAs between grain-fed and pasture-based beef, but higher
concentrations of myristic (C14:0) and palmitic acids (C16:0) (thought to have a greater
impact on serum cholesterol [115]) in intensive grain-fed beef and lower concentrations
of stearic acid (thought to have a neutral impact on serum cholesterol [115]) than in grass-
fed beef, suggesting that grass-fed may have a nutritionally favourable SFA profile than
grain-fed beef. Complicating the lack of clear difference in meat SFA content based on
feed system, a meta-analysis found no difference in the proportion of SFAs between the
organic and conventional systems [39]. In following dietary recommendations to reduce
SFA intake overall, there is some evidence that switching to organic may reduce total SFA
intake (although inconsistent between studies), but it seems that consumption of meat from
pasture-based ruminant systems contributes to the intake of a more favourable SFA profile
(although overall SFA might be similar).

6.2. Monounsaturated Fatty Acids

Conventional beef has been shown to have more (by both concentration and propor-
tion) MUFA than organic and/or grazing-based alternatives [35,39,116–118]. It is however
unclear why this difference occurs (potentially to do with the supply of oleic acids from
conventional diets and/or the de novo synthesis of OA in the muscle), and there are no
known reports associating the higher MUFA in conventional beef on human nutrition and
health; further research is required.
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Despite organic and/or grass-fed meat having less overall MUFA, it sometimes con-
tains more VA (t11 C18:1) [115,117], resulting in greater de novo synthesis of the beneficial
CLA9 within body tissues. As discussed, CLA9 has been associated with positive health
outcomes, suggesting that any increase in this FA, could positively impact human health,
although, again, more research is needed to assess this.

6.3. Polyunsaturated Fatty Acids

Consistently across studies, total PUFA content is higher in grass-fed meat, followed by
organic meat [39,114,117–119]. A meta-analysis by Średnicka-Tober et al. [39] found organic
meat to have around 23% more total PUFAs than conventional counterparts. However,
this elevated concentration of PUFA seems to be at the expense of MUFA, rather than SFA.
So, whilst an increase in PUFA, in theory, may have positive outcomes on human health,
this could be negated as it does not directly align with the nutritional recommendation to
replace SFA with cis-MUFA and cis-PUFA [67].

6.3.1. Omega-3 Fatty Acids

Beef is a source of essential long-chain omega-3 fatty acids, which are often under-
consumed in the human diet and meat products are one of the main sources of these
FAs (while oily fish probably represents their most widely recommended source) [117].
Consumption of very-long-chain (VLC) n-3 PUFA reduces the risk of cardiovascular disease,
as well as demonstrating reduced arrhythmia, blood pressure, inflammation, platelet
sensitivity and risk of dementia, contributing to foetal brain development and delaying
mental cognition decline in elderly men [120,121].

Analysis of beef from Aberdeen Angus cattle fed: (a) only grass, (b) grass silage and
concentrates or c) only concentrates found grass-only feeding produced meat significantly
higher in n-3 PUFA, including ALA and DPA [114] and EPA and DHA [105]. Consum-
ing ruminant meat could be a good method of increasing population n-3 and VLC n-3
intakes [122,123] since organic and pasture-fed beef has more n-3 and VLC n-3, contributing
to higher n-3 intakes for the consumer [35,39,116,117,124]. Additionally, certified 100%
pasture-fed beef could qualify as ‘sources of long-chain n-3′ (pasture-fed: 41 mg VLC/100 g
steak, conventional: 28 mg VLC/100 g steak) [117], with more than 40 mg VLC n-3 per
100 g food, as regulated by the European Food Standards [125]. Whilst no cohort study
examining the impact of consuming organic and/or pasture-fed meat on human health has
been conducted, evidence points towards an increase in n-3 intakes from pasture-based
beef, which could be highly relevant for consumers who do not consume oily fish (thus
meat being their major source of n-3).

6.3.2. Omega-6 Fatty Acids

There seems to be a mix of results for omega-6 content when comparing organic and
grass-fed beef to conventional, with some studies finding more LA in organic [35,40] and
others in conventional beef [116,117]; however, in nearly all publications, the difference in
LA between the systems is marginal, suggesting that management (and thus, potentially
diet) has very little impact on the LA or total n-6 concentration in beef.

6.3.3. Omega-6:Omega-3 Ratio

Many studies show beef from grazing systems have lower n-6:n-3 ratios compared
with maize silage [105] and grain-based feeding [39,42,113,117,118,126]. The evidence
strongly suggests that the more fresh forage in ruminant feeding, the lower the n-6:n-3 ratio
in their diet, contributing to a reduced ratio in the resulting beef. In a comparison of the
fatty acid content of sirloin steaks from UK retail outlets, the n-6:n-3 ratio was lower in
organic (1.49) compared to conventional (2.78) meat [116]. A study comparing meat from
crossbred steers reared on a pasture-based diet compared with a corn/maize grain diet
found that pasture-fed beef produced a lower LA:ALA ratio (3.9 vs. 6.7, respectively) [119],
which is reflective of the n-6:n-3 ratio. Similarly, Lenighan et al. [114] investigated meat
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quality from heifers finished under three different diets, analysing the fat quality in cooked
meat and found the same pattern with an n-6:n-3 ratio from grass-fed finished beef at
1.2 and concentrate finished at 4.2, while the grass silage and concentrate finished beef
split the difference at 1.9. A US study considered meat quality from feed-lot (20% forage),
organic (>30% forage) and grass-fed (100% forage) finished steers and found a much greater
difference in n-6:n-3 ratio (20.7, 14.4 and 1.5, respectively) [113]. Berthelot and Gruffat [105]
identified a similar pattern in an analysis of 46 publications, finding that n-6:n-3 ratios
decreased with diet-type changes toward more grass intake (concentrate = 10.0; corn-
silage = 8.7; concentrate-forage = 5.8; grass-based = 2.4). This is potentially reflective
of the US maize-based ruminant diets, both as silage and dry corn, which have much
higher LA concentrations than grass-based alternatives [127,128]. This pattern indicates
that when cattle are typically fed diets with more n-6 (i.e., intensive growing/finishing
feeding systems), there will be a much greater decrease in the n-6:n-3 ratio when switching
(or comparing) to pasture-fed beef, thus having more of an impact on the overall ratio
consumed and potentially nutritional and health attributes of the meat. Interestingly, there
do not appear to be major differences in meat FA profile from cattle grazing different
sward types [129], further demonstrating that the majority of the benefit to meat FA profile
comes from the partial or full replacement of grain with fresh, preferably grazed, pasture
or forages.

6.3.4. CLA

There are many studies showing CLA9 concentrations in beef increase as forage
content increases in the ruminant diet (similarly to omega-3) [117,130]; however, increases
in red meat consumption (without distinguishing between ruminant diets) have been
linked to an increased risk of premature death and colorectal cancer [9]. The health
impacts from increasing consumption of ruminant produce with high CLA9 are difficult to
distinguish given this overall assessment of red meat, similar to most fatty acids discussed
in this review.

7. Human Health Implications

Increasing the amount of forage in the ruminant diet results in a higher proportion
of n-3 and lower n-6:n-3 ratio, which is both highly relevant for human health; however,
with this meat forming a very low proportion of the typical UK diet, would switching
to forage-fed beef significantly impact population health? To answer this would require:
(i) evaluating/modelling the impacts of switching to forage-fed beef on intakes of nutri-
tionally relevant FAs and groups in a typical diet, and (ii) conducting long-term human
intervention dietary trials. The present study attempts the former considering the contri-
bution to recommended dietary intakes (RDI), using beef fatty acid concentrations from
studies evaluating composition from different feeding systems applied to typical red meat
consumption or following two recommended consumption guidelines.

As discussed, there are many factors that drive changes in fat composition. These
differences in the composition will ultimately impact nutrient supply to consumers of
conventional, organic and grass-fed meat. For this review, we modelled examples using
three consumption scenarios: (i) average UK population National Diet and Nutrition
Survey (NDNS) (<128 g/week) [131] red meat consumption, (ii) red meat consumption
suggested by the UK National Health Service (NHS) (<490 g/week) [132] and (iii) red meat
consumption suggested by the Eat Lancet Report (<98 g/week) [7]. The average fat content
of beef was assumed to be 10.61 g/100 g, as per McCance and Widdowson’s composition
of foods integrated dataset [38], from 23 categories of cooked beef cuts. To transform FA
contents from raw values reported in the literature to cooked values, 23 raw beef cuts
and the equivalent cooked cuts were compared in the same database and the correction
factor of fat content for cooked:raw was estimated to be 10.61:9.52 = 1.115. The conversion
factor to determine total fatty acids in fat was estimated as 0.935 according to McCance and
Widowson’s 7th summary edition [38]. In the first scenario, intakes of beef fat (g/day) were
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recorded fat intakes from the “beef, veal and dishes” food category in NDNS. In the second
and third scenario, fat intakes were calculated by converting recommended beef intakes
to fat intakes using an average content of 10.61 g fat/100 g cooked beef (from 23 cooked
beef foods in the McCance and Widdowson’s composition of foods integrated dataset [38]);
and were 52.0 g fat/week and 10.4 g fat/week, respectively. Table 1 describes the sources
of meat fatty acid profiles used in these scenarios, which included three retail studies and
four independent animal experiments investigating nutritional differences between feed
and management systems, using IM adipose tissue and similar data units. The limited
number of papers presented in this table demonstrates the lack of comparable studies in
the literature.

Table 1. Feed system, meat source and country of the seven studies included in the data analysis of
fatty acid consumption from beef.

Source Feed System 1 Meat Sources Country

Alfaia, Alves, Martins, Costa, Fontes,
Lemos, Bessa and Prates [118] PB INT Alentejano purebred bulls Portugal

Berthelot and Gruffat [105] PB CON INT Beef cattle France
Bjorklund, Heins, DiCostanzo and

Chester-Jones [113] PB ORG CON Crossbred Dairy Bulls USA

Butler, Ali, Oladokun, Wang and
Davis [117] PB ORG CON Supermarket & Farms

(grass-fed) UK

Descalzo, Insani, Biolatto, Sancho,
García, Pensel and Josifovich [119] PB INT Crossbred Steers Argentina

Kamihiro, Stergiadis, Leifert, Eyre and
Butler [116] ORG CON Supermarket UK

Łozicki, Dymnicka, Arkuszewska and
Pustkowiak [35] ORG CON Hereford bulls Poland

Ribas-Agustí, Díaz, Sárraga,
García-Regueiro and Castellari [40] ORG CON Supermarket Spain

1 PB: pasture-based; ORG: organic; CON: conventional; INT: intensive grain-fed.

Table 2 shows predicted nutrient intakes averaged across age and sex, with the three
different scenarios, under four different feeding systems: (i) 100% pasture-based (PB),
(ii) organic (ORG), (iii) conventional (CON) and (iv) intensive grain-fed (INT). The full
nutrient intakes from the different scenarios, expressed as % RDIs categorised by age and
sex, are included in Supplementary Materials (Tables S1–S6).

The nutrient intakes (Table 2) resulting from this modelling exercise are presented as
the proportion of daily recommended intakes (RDI) supplied from each of the consumption
scenarios (NDNS, NHS and Eat Lancet). RDIs used in the present study were in line
with the Scientific Advisory Committee on Nutrition (SACN) [67]. These are: SFA, <10%
energy intake (EI); trans-fat, <2% EI; MUFA, 12% EI; cis-PUFA, 6% EI; long-chain n-3
PUFA, 200–450 mg/day; n-6, <10% EI; ALNA, >0.2% EI; LA, >1% EI. Energy intakes for
the different demographics were in line with SACN reference values [133]. For many of
the fatty acids listed, red meat is not the primary source of these nutrients, making some
of the differences minimal; however, the most notable differences are for total n-3, ALA
and EPA + DHA, which diet and nutrition literature suggest are fatty acids that should
increase in the human diet. Based on NHS guidelines, and assuming all ‘red meat’ was
beef (not pork or lamb and not processed products), 82.6% RDI of n-3 could come from
pasture-based beef, compared to 27.1% from intensive grain-fed, 22.3% from conventional,
and 32.0% from organic beef (Table 2). Though the overall proportion of RDI is lower,
the same pattern exists for ALA (38.9% from PB, 9.9% INT, 10.2% CON and 15.3% ORG)
and EPA + DPA (66.4% from PB, 29.4% INT, 18.4% CON and 14.9% ORG). Although
there are differences between the proportion of these fatty acid RDIs coming from organic,
conventional and intensive beef, it seems that consumption of pasture-based beef would
provide a substantially higher contribution of some beneficial FAs in human diets. Given
that the difference between the undesirable fatty acids is minimal (SFAs and trans FAs)



Foods 2022, 11, 646 12 of 19

from a nutrition perspective switching to pasture-based beef seems to be a reliable method
of increasing desirable n-3 FAs in human diets.

Table 2. Predicted fatty acid intakes from beef from four different feeding systems (Intensive: INT;
Conventional: CON; Organic: ORG; Pasture-Based: PB) as a percentage of recommended daily intake
(RDI) 1, based on three different intake scenarios (NDNS, NHS, EAT LANCET) averaged across age
and sex; assuming beef fat content of 10.61 g/100 g (averaged from 23 categories of cooked beef cuts)
and beef fat to be 93.5% fatty acids, according to the McCance and Widdowson’s composition of
foods integrated dataset [38].

Recorded Beef Fat Intakes NDNS 2 (21 g/Week, 3 g/Day)

% RDI Intensive Conventional Organic Pasture-Based

SFA 3.6 3.6 3.5 3.3
Trans 1.5 1.8 1.2 1.1

MUFA 2.7 3.2 3.0 2.5
cis-PUFA 0.4 0.3 0.2

n-3 6.7 5.5 8.0 20.6
n-6 1.1 0.4 0.4 0.7

ALA 2.3 2.4 3.6 9.2
LA 6.7 3.8 3.8 4.5

EPA + DHA 7.3 4.6 3.7 16.5

Intakes NHS 3 (490 g beef/week, 70 g/day)
Intensive Conventional Organic Pasture-based

SFA 14.4 14.2 14.0 13.0
Trans 6.2 7.6 5.0 4.8

MUFA 11.3 13.5 12.8 10.5
cis-PUFA 1.6 1.4 0.7

n-3 27.1 22.3 32.0 82.6
n-6 4.5 1.9 1.7 2.9

ALA 9.9 10.2 15.3 38.9
LA 28.4 16.3 16.2 19.2

EPA + DHA 29.4 18.4 14.9 66.4

Intakes EAT LANCET 4 (98 g beef/week, 14 g/day)
Intensive Conventional Organic Pasture-Based

SFA 2.9 2.8 2.8 2.6
Trans 1.2 1.5 1.0 1.0

MUFA 2.3 2.7 2.6 2.1
cis-PUFA 0.3 0.3 0.1

n-3 5.4 4.5 6.4 16.5
n-6 0.9 0.4 0.3 0.6

ALA 2.0 2.0 3.1 7.8
LA 5.7 3.3 3.2 3.8

EPA + DHA 5.9 3.7 3.0 13.3
1 RDIs in line with the Scientific Advisory Committee on Nutrition (SACN) [67]: SFA <10% energy intake (EI);
trans-fat <2% EI; MUFA 12% EI; cis-PUFA = 6% EI; long-chain n-3 PUFA = 200–450 mg/day; n-6 <10% EI; ALNA
>0.2% EI; LA,>1% EI. 2 NDNS: National Diet and Nutrition Survey Years 9-11 [131]; 3 NHS: UK National Health
Service [132]; 4 EAT LANCET: Eat Lancet report [7].

The study also considered guidelines in the Eat Lancet report [7] to reflect dietary
recommendations derived from concerns over the ecological consequences of animal
production systems. These recommendations skew to the extreme of plant-based diets
while still allowing for a small amount of meat consumption. Even at this much lower
consumption of red meat at 14 g/day, 16.5% RDI of n-3 could be achieved from pasture-
based beef, compared to 5.4% of intensively reared, 4.5% conventional and 6.4% of organic
beef). This is similarly true for ALA (7.8% from PB, 2.0% from INT and CON and 3.1%
from ORG) and EPA + DHA (13.3% from PB, 5.9% from INT, 3.7% from CON and 3.0%
from ORG). While discussing the nutritional and dietary viability of extreme reductions in
meat consumption are beyond the scope of this paper, the evidence demonstrates that even
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for the predominately plant-based diet recommended by the Eat Lancet report, where less
of the RDI of fatty acids will be derived from meat, the feeding system used to produce
this meat can still play a role on daily intakes of essential FAs, with pasture-based meat
increasing these intakes.

Given that findings in Table 2 and Tables S1–S6 make several assumptions and are
based on the average fat contents across different cuts, they provide a generic picture of
potential nutritional implications, although contributions may substantially change with
the consumption of meat with different fat content. These scenarios are not included in the
present paper but can be derived using the formula: contribution to % RDI of x FA when
cooked beef cut with z% fat content is consumed = (z/10.61)×% RDI contribution towards x
FA presented in the tables in the present study. For example, the contribution of the different
FAs for lean, roasted medium-rare topside cuts (with z = 5.1% fat content [38]), values in
the tables should be multiplied with a correction factor of z/10.61 = 5.1/10.61 = 0.4807. On
the contrary, for a fatty pot-roasted flank (with z = 22.3% fat content [38]), all values in the
tables should be multiplied with a correction factor of z/10.61 = 22.3/10.61 = 2.1018

In the present study, estimated values also assume a correction factor for the fat content
of cooked vs. raw beef cuts, to account for the increase in fat content due to moisture loss
during cooking [38]; however, this does not account for any potential effect of the cooking
method, known to influence the FA profile consumed, primarily via the addition of fats
during cooking (e.g., pan-fried rib-eye steaks) or temperature and duration of cooking [67].
The RDIs used in the present study, as well as the recommended energy intakes, were in line
with the Scientific Advisory Committee on Nutrition (SACN), as mentioned earlier [67]. It
is recommended that future comparative work should account for the differences between
countries and organisations on nutrient reference values and recommended intakes, as
these would affect the relative contribution from beef.

8. Conclusions

This review set out to examine if organic and/or pasture-based beef confers nutritional
benefits compared to conventionally produced beef. The evidence suggests the fatty
acid profile of beef meat produced under pasture-based diets has a more nutritionally
desirable fatty acid profile than intensively and conventionally reared beef, and to a lesser
extent, maybe even compared with organically reared beef. Although some beneficial fatty
acids are more prevalent in some analyses of organic beef compared with conventional,
the driving force behind the improved fatty acid profile is the forage proportion in the
diet. This is particularly evident in the much higher percentage of total omega-3 and
long-chain fatty acids EPA + DHA from pasture-based diets compared to organically
reared beef. The literature review and analysis of predicted fatty acid intakes based on
recorded/recommended meat intakes and the RDI for the different FAs and FA groups
demonstrate that the average consumer would receive more of the beneficial fatty acids
for human health through consumption of pasture-based beef, produced either organically
or conventionally.

The impact that human consumption habits have on health will continue to gain
interest over time. Yet, it is important to consider that the individual foods and nutrients
do not directly affect human health in isolation, but feature as part of the whole diet, which
interact with many other factors (exercise, socio-economic status, access to healthcare, etc.)
that ultimately determine health. Therefore, switching to pasture-fed and/or organic beef
will provide more of the beneficial nutrients, but as to whether that will directly impact
human health requires analysis in human studies and consideration of several factors
(nutritional and other) beyond beef fat quality.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods11050646/s1, Table S1: Predicted fatty acid intakes from beef produced in four different
beef feed systems (Intensive, INT; Conventional, CON; Organic, ORG; Pasture-Based, PB) as a
percentage of recommended daily intake (RDI) across sex and age based on beef fat intakes from
the National Diet and Nutrition Survey; assuming average fat content of beef been 10.61 g/100 g
(averaged from 23 categories of cooked beef cuts), and fatty acid content of beef fat to be 93.5%,
according to the McCance and Widdowson’s composition of foods integrated dataset; Table S2:
Predicted fatty acid intakes from beef produced in four different beef feed systems (Intensive, INT;
Conventional, CON; Organic, ORG; Pasture-Based, PB) as a percentage of recommended daily intake
(RDI) across sex and age based on beef fat intakes from the National Diet and Nutrition Survey;
assuming average fat content of beef been 10.61 g/100 g (averaged from 23 categories of cooked beef
cuts), and fatty acid content of beef fat to be 93.5%, according to the McCance and Widdowson’s
composition of foods integrated dataset; Table S3: Predicted fatty acid intakes from beef produced in
four different beef feed systems (Intensive, INT; Conventional, CON; Organic, ORG; Pasture-Based,
PB) as a percentage of recommended daily intake (RDI) across sex and age based on the NHS: UK
National Health Service recommendations of 490 g beef/week (70 g/day); assuming average fat
content of beef been 10.61 g/100 g (averaged from 23 categories of cooked beef cuts), and fatty acid
content of beef fat to be 93.5%, according to the McCance and Widdowson’s composition of foods
integrated dataset; Table S4: Predicted fatty acid intakes from beef produced in four different beef
feed systems (Intensive, INT; Conventional, CON; Organic, ORG; Pasture-Based, PB) as a percentage
of recommended daily intake (RDI) across sex and age based on the NHS: UK National Health
Service recommendations of 490 g beef/week (70 g/day); assuming average fat content of beef been
10.61 g/100 g (averaged from 23 categories of cooked beef cuts), and fatty acid content of beef fat
to be 93.5%, according to the McCance and Widdowson’s composition of foods integrated dataset;
Table S5: Predicted fatty acid intakes from beef produced in four different beef feed systems (Intensive,
INT; Conventional, CON; Organic, ORG; Pasture-Based, PB) as a percentage of recommended daily
intake (RDI) across sex and age based on the EAT LANCET: Eat Lancet report of 98 g beef/week
(14 g/day); assuming average fat content of beef been 10.61 g/100 g (averaged from 23 categories
of cooked beef cuts), and fatty acid content of beef fat to be 93.5%, according to the McCance and
Widdowson’s composition of foods integrated dataset; Table S6: Predicted fatty acid intakes from
beef produced in four different beef feed systems (Intensive, INT; Conventional, CON; Organic,
ORG; Pasture-Based, PB) as a percentage of recommended daily intake (RDI) across sex and age
based on the EAT LANCET: Eat Lancet report of 98 g beef/week (14 g/day); assuming average fat
content of beef been 10.61 g/100 g (averaged from 23 categories of cooked beef cuts), and fatty acid
content of beef fat to be 93.5%, according to the McCance and Widdowson’s composition of foods
integrated dataset.
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ałkowska, E.; Skwarło-Sońta, K.; Eyre, M. Composition differences between organic and conventional meat: A systematic
literature review and meta-analysis. Br. J. Nutr. 2016, 115, 994–1011. [CrossRef] [PubMed]

40. Ribas-Agustí, A.; Díaz, I.; Sárraga, C.; García-Regueiro, J.A.; Castellari, M. Nutritional properties of organic and conventional beef
meat at retail. J. Sci. Food Agric. 2019, 99, 4218–4225. [CrossRef]

41. Park, S.J.; Beak, S.-H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic,
management, and nutritional factors affecting intramuscular fat deposition in beef cattle-A review. Asian-Australas. J. Anim. Sci.
2018, 31, 1043–1061. [CrossRef] [PubMed]

42. Warren, H.E.; Scollan, N.D.; Enser, M.; Hughes, S.; Richardson, R.I.; Wood, J.D. Effects of breed and a concentrate or grass silage
diet on beef quality in cattle of 3 ages. I: Animal performance, carcass quality and muscle fatty acid composition. Meat Sci. 2008,
78, 256–269. [CrossRef]

43. Wood, J.; Enser, M.; Fisher, A.; Nute, G.; Sheard, P.; Richardson, R.; Hughes, S.; Whittington, F. Fat deposition, fatty acid
composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [CrossRef]

44. Sexten, A.; Krehbiel, C.; Dillwith, J.; Madden, R.; McMurphy, C.; Lalman, D.; Mateescu, R. Effect of muscle type, sire breed, and
time of weaning on fatty acid composition of finishing steers. J. Anim. Sci. 2012, 90, 616–625. [CrossRef]

45. Hocquette, J.F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals:
Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [CrossRef]

46. Lapitan, R.M.; Del Barrio, A.N.; Katsube, O.; BAN-TOKUDA, T.; Orden, E.A.; Robles, A.Y.; Cruz, L.C.; Kanai, Y.; Fujihara, T.
Comparison of carcass and meat characteristics of Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus
bubalis) fed on high roughage diet. Anim. Sci. J. 2008, 79, 210–217. [CrossRef]

47. Irie, M.; Kouda, M.; Matono, H. Effect of ursodeoxycholic acid supplementation on growth, carcass characteristics, and meat
quality of Wagyu heifers (Japanese Black cattle). J. Anim. Sci. 2011, 89, 4221–4226. [CrossRef]

48. Pethick, D.W.; Harper, G.S.; Oddy, V.H. Growth, development and nutritional manipulation of marbling in cattle: A review. Anim.
Prod. Sci. 2004, 44, 705–715. [CrossRef]

49. Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [CrossRef]
50. Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J. Parenter. Enteral. Nutr. 2015, 39, 18S–32S.

[CrossRef]
51. Goyens, P.L.; Spilker, M.E.; Zock, P.L.; Katan, M.B.; Mensink, R.P. Conversion of alpha-linolenic acid in humans is influenced by

the absolute amounts of alpha-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr. 2006, 84, 44–53.
[CrossRef]

52. De Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.
Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes:
Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [CrossRef]

53. Mensink, R.P.; Zock, P.L.; Kester, A.D.M.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total
to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77,
1146–1155. [CrossRef]

54. Stein, O.; Stein, Y. Atheroprotective mechanisms of HDL. Atherosclerosis 1999, 144, 285–301. [CrossRef]
55. Garg, M.L.; Blake, R.J.; Wills, R.B.H. Macadamia nut consumption lowers plasma total and LDL cholesterol levels in hypercholes-

terolemic men. J. Nutr. 2003, 133, 1060–1063. [CrossRef]
56. Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kröger, J.; Schulze, M.B.; Crowe, F.L.; Huerta, J.M.; Guevara, M.; Beulens,

J.W.J. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type
2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014, 2, 810–818. [CrossRef]

57. Khaw, K.-T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N. Plasma phospholipid fatty acid concentration and incident coronary
heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Med. 2012, 9, e1001255. [CrossRef]

58. Field, C.J.; Blewett, H.H.; Proctor, S.; Vine, D. Human health benefits of vaccenic acid. Appl. Physiol. Nutr. Metab. 2009, 34, 979–991.
[CrossRef] [PubMed]

59. Tarantino, G.; Finelli, C. Lipids, Low-Grade Chronic Inflammation and NAFLD: A Ménage À Trois? In Handbook of Lipids in
Human Function; Elsevier: Amsterdam, The Netherlands, 2016; pp. 731–759.

60. Mensink, R.P.; Katan, M.B. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler.
Thromb. A J. Vasc. Biol. 1992, 12, 911–919. [CrossRef] [PubMed]

61. Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.;
Thompson, S.G. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and
meta-analysis. Ann. Intern. Med. 2014, 160, 398–406. [CrossRef] [PubMed]

http://doi.org/10.1016/j.meatsci.2006.05.002
http://doi.org/10.1017/S0007114515005073
http://www.ncbi.nlm.nih.gov/pubmed/26878675
http://doi.org/10.1002/jsfa.9652
http://doi.org/10.5713/ajas.18.0310
http://www.ncbi.nlm.nih.gov/pubmed/29879830
http://doi.org/10.1016/j.meatsci.2007.06.008
http://doi.org/10.1016/j.meatsci.2007.07.019
http://doi.org/10.2527/jas.2011-4218
http://doi.org/10.1017/S1751731109991091
http://doi.org/10.1111/j.1740-0929.2008.00519.x
http://doi.org/10.2527/jas.2011-4211
http://doi.org/10.1071/EA02165
http://doi.org/10.3168/jds.S0022-0302(02)74079-4
http://doi.org/10.1177/0148607115595980
http://doi.org/10.1093/ajcn/84.1.44
http://doi.org/10.1136/bmj.h3978
http://doi.org/10.1093/ajcn/77.5.1146
http://doi.org/10.1016/S0021-9150(99)00065-9
http://doi.org/10.1093/jn/133.4.1060
http://doi.org/10.1016/S2213-8587(14)70146-9
http://doi.org/10.1371/journal.pmed.1001255
http://doi.org/10.1139/H09-079
http://www.ncbi.nlm.nih.gov/pubmed/19935865
http://doi.org/10.1161/01.ATV.12.8.911
http://www.ncbi.nlm.nih.gov/pubmed/1386252
http://doi.org/10.7326/M13-1788
http://www.ncbi.nlm.nih.gov/pubmed/24723079


Foods 2022, 11, 646 17 of 19

62. Vafeiadou, K.; Weech, M.; Altowaijri, H.; Todd, S.; Yaqoob, P.; Jackson, K.G.; Lovegrove, J.A. Replacement of saturated with
unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure:
Results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. Am. J. Clin. Nutr. 2015, 102,
40–48. [CrossRef]

63. Jahreis, G.; Dawczynski, C. Milk and Dairy Foods: Their Functionality in Human Health and Disease. In Trans and Conjugated
Fatty Acids in Dairy Products: Cause for Concern? Elsevier: Amsterdam, The Netherlands, 2020.

64. Mozaffarian, D.; Aro, A.; Willett, W.C. Health effects of trans-fatty acids: Experimental and observational evidence. Eur. J. Clin.
Nutr. 2009, 63, S5–S21. [CrossRef]

65. Qiu, B.; Wang, Q.; Liu, W.; Xu, T.C.; Liu, L.N.; Zong, A.Z.; Jia, M.; Li, J.; Du, F.L. Biological effects of trans fatty acids and their
possible roles in the lipid rafts in apoptosis regulation. Cell Biol. Int. 2018, 42, 904–912. [CrossRef]

66. Nestel, P. Trans fatty acids: Are its cardiovascular risks fully appreciated? Clin. Ther. 2014, 36, 315–321. [CrossRef]
67. Scientific Advisory Committee on Nutrition. Saturated Fats and Health; Scientific Advisory Committee on Nutrition: London,

UK, 2019.
68. Russo, G.L. Dietary n−6 and n−3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular

prevention. Biochem. Pharmacol. 2009, 77, 937–946. [CrossRef]
69. Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat:

A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7, e1000252. [CrossRef]
70. Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3,

1–7. [CrossRef]
71. Goyens, P.L.L.; Spilker, M.E.; Zock, P.L.; Katan, M.B.; Mensink, R.P. Compartmental modeling to quantify α-linolenic acid

conversion after longer term intake of multiple tracer boluses. J. Lipid Res. 2005, 46, 1474–1483. [CrossRef]
72. Brenna, J.T.; Salem, N.; Sinclair, A.J.; Cunnane, S.C. α-Linolenic acid supplementation and conversion to n-3 long-chain polyun-

saturated fatty acids in humans. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 85–91. [CrossRef]
73. Kris-Etherton, P.M.; Grieger, J.A.; Etherton, T.D. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot. Essent. Fat.

Acids 2009, 81, 99–104. [CrossRef]
74. Benbrook, C.M.; Davis, D.R.; Heins, B.J.; Latif, M.A.; Leifert, C.; Peterman, L.; Butler, G.; Faergeman, O.; Abel-Caines, S.; Baranski,

M. Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes. Food Sci.
Nutr. 2018, 6, 681–700. [CrossRef]

75. Augood, C.; Chakravarthy, U.; Young, I.; Vioque, J.; de Jong, P.T.; Bentham, G.; Rahu, M.; Seland, J.; Soubrane, G.; Tomazzoli,
L.; et al. Oily fish consumption, dietary docosahexaenoic acid and eicosapentaenoic acid intakes, and associations with neovascular
age-related macular degeneration. Am. J. Clin. Nutr. 2008, 88, 398–406. [CrossRef]

76. Meyer, B.J. Are we consuming enough long chain omega-3 polyunsaturated fatty acids for optimal health? Prostaglandins Leukot.
Essent. Fat. Acids 2011, 85, 275–280. [CrossRef]

77. Bauch, A.; Lindtner, O.; Mensink, G.B.; Niemann, B. Dietary intake and sources of long-chain n-3 PUFAs in German adults. Eur. J.
Clin. Nutr. 2006, 60, 810–812. [CrossRef]

78. Dunstan, J.A.; Mitoulas, L.R.; Dixon, G.; Doherty, D.A.; Hartmann, P.E.; Simmer, K.; Prescott, S.L. The effects of fish oil
supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: A randomized controlled trial.
Pediatr. Res. 2007, 62, 689. [CrossRef]

79. Janssen, C.I.F.; Kiliaan, A.J. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of
LCPUFA on neural development, aging, and neurodegeneration. Prog. Lipid Res. 2014, 53, 1–17. [CrossRef]

80. Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys.
Acta Mol. Cell Biol. Lipids 2015, 1851, 469–484. [CrossRef]

81. Gleissman, H.; Johnsen, J.I.; Kogner, P. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp. Cell Res.
2010, 316, 1365–1373. [CrossRef] [PubMed]

82. Simopoulos, A. Dietary Omega-3 Fatty Acid Deficiency and High Fructose Intake in the Development of Metabolic Syndrome,
Brain Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease. Nutrients 2013, 5, 2901. [CrossRef] [PubMed]

83. Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Et Biophys. Acta Mol. Cell Biol. Lipids 2014,
1841, 422–434. [CrossRef] [PubMed]

84. Camandola, S.; Leonarduzzi, G.; Musso, T.; Varesio, L.; Carini, R.; Scavazza, A.; Chiarpotto, E.; Baeuerle, P.A.; Poli, G. Nuclear
factor kB is activated by arachidonic acid but not by eicosapentaenoic acid. Biochem. Biophys. Res. Commun. 1996, 229, 643–647.
[CrossRef]

85. Harris, W.S.; Mozaffarian, D.; Rimm, E.; Kris-Etherton, P.; Rudel, L.L.; Appel, L.J.; Engler, M.M.; Engler, M.B.; Sacks, F. Omega-6
fatty acids and risk for cardiovascular disease: A science advisory from the American Heart Association Nutrition Subcommittee
of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology
and Prevention. Circulation 2009, 119, 902–907.

86. Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic
Diseases. Exp. Biol. Med. 2008, 233, 674–688. [CrossRef]

87. Donahue, S.M.A.; Rifas-Shiman, S.L.; Gold, D.R.; Jouni, Z.E.; Gillman, M.W.; Oken, E. Prenatal fatty acid status and child adiposity
at age 3 y: Results from a US pregnancy cohort. Am. J. Clin. Nutr. 2011, 93, 780–788. [CrossRef]

http://doi.org/10.3945/ajcn.114.097089
http://doi.org/10.1038/sj.ejcn.1602973
http://doi.org/10.1002/cbin.10958
http://doi.org/10.1016/j.clinthera.2014.01.020
http://doi.org/10.1016/j.bcp.2008.10.020
http://doi.org/10.1371/journal.pmed.1000252
http://doi.org/10.3945/an.111.000893
http://doi.org/10.1194/jlr.M400514-JLR200
http://doi.org/10.1016/j.plefa.2009.01.004
http://doi.org/10.1016/j.plefa.2009.05.011
http://doi.org/10.1002/fsn3.610
http://doi.org/10.1093/ajcn/88.2.398
http://doi.org/10.1016/j.plefa.2011.04.010
http://doi.org/10.1038/sj.ejcn.1602399
http://doi.org/10.1203/PDR.0b013e318159a93a
http://doi.org/10.1016/j.plipres.2013.10.002
http://doi.org/10.1016/j.bbalip.2014.08.010
http://doi.org/10.1016/j.yexcr.2010.02.039
http://www.ncbi.nlm.nih.gov/pubmed/20211172
http://doi.org/10.3390/nu5082901
http://www.ncbi.nlm.nih.gov/pubmed/23896654
http://doi.org/10.1016/j.bbalip.2013.08.011
http://www.ncbi.nlm.nih.gov/pubmed/23988654
http://doi.org/10.1006/bbrc.1996.1857
http://doi.org/10.3181/0711-MR-311
http://doi.org/10.3945/ajcn.110.005801


Foods 2022, 11, 646 18 of 19

88. Simopoulos, A. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128.
[CrossRef]

89. Czernichow, S.; Thomas, D.; Bruckert, E. n-6 Fatty acids and cardiovascular health: A review of the evidence for dietary intake
recommendations. Br. J. Nutr. 2010, 104, 788–796. [CrossRef]

90. Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty
acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [CrossRef]

91. Zárate, R.; el Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in
human health. Clin. Transl. Med. 2017, 6, 25. [CrossRef]

92. Kang, J.X.; Weylandt, K.H. Modulation of inflammatory cytokines by omega-3 fatty acids. In Lipids in Health and Disease; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 133–143.

93. Simopoulos, A.P. Evolutionary aspects of diet and essential fatty acids. World Rev. Nutr. Diet. 2001, 88, 18–27.
94. Tricon, S.; Burdge, G.C.; Williams, C.M.; Calder, P.C.; Yaqoob, P. The effects of conjugated linoleic acid on human health-related

outcomes. Proc. Nutr. Soc. 2005, 64, 171–182. [CrossRef]
95. Wahle, K.W.J.; Heys, S.D.; Rotondo, D. Conjugated linoleic acids: Are they beneficial or detrimental to health? Prog. Lipid Res.

2004, 43, 553–587. [CrossRef]
96. Benjamin, S.; Spener, F. Conjugated linoleic acids as functional food: An insight into their health benefits. Nutr. Metab. 2009, 6, 36.

[CrossRef]
97. Kennedy, A.; Martinez, K.; Schmidt, S.; Mandrup, S.; LaPoint, K.; McIntosh, M. Antiobesity mechanisms of action of conjugated

linoleic acid. J. Nutr. Biochem. 2010, 21, 171–179. [CrossRef]
98. Dilzer, A.; Park, Y. Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513.

[CrossRef]
99. Yang, B.; Chen, H.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, Y.Q.; Chen, W. Review of the roles of conjugated linoleic acid in

health and disease. J. Funct. Foods 2015, 15, 314–325. [CrossRef]
100. McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 7th ed.; Pearson

Education: London, UK, 2011.
101. Walker, G.P.; Francis, S.A.; Heard, J.W.; Doyle, P.T. Fatty acid composition of pastures. Sci. Access 2004, 1, 192–195.
102. Clapham, W.M.; Foster, J.G.; Neel, J.P.S.; Fedders, J.M. Fatty Acid Composition of Traditional and Novel Forages. J. Agric. Food

Chem. 2005, 53, 10068–10073. [CrossRef]
103. Ryan, E.; Galvin, K.; O’connor, T.P.; Maguire, A.R.; O’brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile

of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [CrossRef] [PubMed]
104. Wojtkowiak, K.; Stepien, A.; Pietrzak-Fiecko, R.; Werechowska, M. Effects of nitrogen fertilisation on the yield, micronutrient

content and fatty acid profiles of winter wheat (Triticum aestivum L.) varieties. J. Elem. 2018, 23, 483–495.
105. Berthelot, V.; Gruffat, D. Fatty acid composition of muscles. INRA Feeding System for Ruminants, Wageningen Academic

Publishers. 2018. Available online: https://hal.inrae.fr/hal-02928115/document (accessed on 18 February 2022).
106. Stergiadis, S.; Cabeza-Luna, I.; Mora-Ortiz, M.; Stewart, R.D.; Dewhurst, R.J.; Humphries, D.J.; Watson, M.; Roehe, R.; Auffret, M.D.

Unravelling the Role of Rumen Microbial Communities, Genes, and Activities on Milk Fatty Acid Profile Using a Combination of
Omics Approaches. Front. Microbiol. 2021, 11, 11. [CrossRef] [PubMed]

107. Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and
biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed. Sci. Technol. 2012, 174, 1–25. [CrossRef]

108. Bauman, D.E.; Harvatine, K.J.; Lock, A.L. Nutrigenomics, Rumen-Derived Bioactive Fatty Acids, and the Regulation of Milk Fat
Synthesis. Annu. Rev. Nutr. 2011, 31, 299–319. [CrossRef]

109. Destaillats, F.; Trottier, J.P.; Galvez, J.M.G.; Angers, P. Analysis of α-Linolenic Acid Biohydrogenation Intermediates in Milk Fat
with Emphasis on Conjugated Linolenic Acids. J. Dairy Sci. 2005, 88, 3231–3239. [CrossRef]

110. Roberts, C.; Steer, T.; Maplethorpe, N.; Cox, L.; Meadows, S.; Nicholson, S.; Page, P.; Swan, G. National Diet and Nutrition Survey:
Results from Years 7 and 8 (Combined) of the Rolling Programme (2014/2015–2015/2016); Public Health England: London, UK, 2018.

111. Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and human
health—Current knowledge and research gaps. Foods 2021, 10, 1556. [CrossRef]

112. Clinquart, A.; Ellies-Oury, M.P.; Hocquette, J.F.; Guillier, L.; Santé-Lhoutellier, V.; Prache, S. Review: On-farm and processing
factors affecting bovine carcass and meat quality. Animal 2022, in press. [CrossRef]

113. Bjorklund, E.A.; Heins, B.J.; DiCostanzo, A.; Chester-Jones, H. Fatty acid profiles, meat quality, and sensory attributes of organic
versus conventional dairy beef steers. J. Dairy Sci. 2014, 97, 1828–1834. [CrossRef]

114. Lenighan, Y.M.; Nugent, A.P.; Moloney, A.P.; Monahan, F.J.; Walton, J.; Flynn, A.; Roche, H.M.; McNulty, B.A. A modelling
approach to investigate the impact of consumption of three different beef compositions on human dietary fat intakes. Public
Health Nutr. 2020, 23, 2373–2383. [CrossRef]

115. Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed
and grain-fed beef. Nutr. J. 2010, 9, 10. [CrossRef]

116. Kamihiro, S.; Stergiadis, S.; Leifert, C.; Eyre, M.; Butler, G. Meat quality and health implications of organic and conventional beef
production. Meat Sci. 2015, 100, 306–318. [CrossRef]

http://doi.org/10.3390/nu8030128
http://doi.org/10.1017/S0007114510002096
http://doi.org/10.1016/j.plipres.2016.07.002
http://doi.org/10.1186/s40169-017-0153-6
http://doi.org/10.1079/PNS2005418
http://doi.org/10.1016/j.plipres.2004.08.002
http://doi.org/10.1186/1743-7075-6-36
http://doi.org/10.1016/j.jnutbio.2009.08.003
http://doi.org/10.1080/10408398.2010.501409
http://doi.org/10.1016/j.jff.2015.03.050
http://doi.org/10.1021/jf0517039
http://doi.org/10.1007/s11130-007-0046-8
http://www.ncbi.nlm.nih.gov/pubmed/17594521
https://hal.inrae.fr/hal-02928115/document
http://doi.org/10.3389/fmicb.2020.590441
http://www.ncbi.nlm.nih.gov/pubmed/33552010
http://doi.org/10.1016/j.anifeedsci.2012.02.009
http://doi.org/10.1146/annurev.nutr.012809.104648
http://doi.org/10.3168/jds.S0022-0302(05)73006-X
http://doi.org/10.3390/foods10071556
http://doi.org/10.1016/j.animal.2021.100426
http://doi.org/10.3168/jds.2013-6984
http://doi.org/10.1017/S1368980019003471
http://doi.org/10.1186/1475-2891-9-10
http://doi.org/10.1016/j.meatsci.2014.10.015


Foods 2022, 11, 646 19 of 19

117. Butler, G.; Ali, A.M.; Oladokun, S.; Wang, J.; Davis, H. Forage-fed cattle point the way forward for beef? Futur. Foods 2021,
3, 100012. [CrossRef]

118. Alfaia, C.P.; Alves, S.P.; Martins, S.I.; Costa, A.S.; Fontes, C.M.; Lemos, J.P.; Bessa, R.J.; Prates, J.A. Effect of the feeding system
on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and
discriminatory ability. Food Chem. 2009, 114, 939–946. [CrossRef]

119. Descalzo, A.M.; Insani, E.; Biolatto, A.; Sancho, A.; García, P.; Pensel, N.; Josifovich, J. Influence of pasture or grain-based diets
supplemented with vitamin E on antioxidant/oxidative balance of Argentine beef. Meat Sci. 2005, 70, 35–44. [CrossRef]

120. Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018,
9, 345–381. [CrossRef]

121. Ruxton, C.H.S.; Reed, S.C.; Simpson, J.A.; Millington, K.J. The health benefits of omega-3 polyunsaturated fatty acids: A review of
the evidence. J. Hum. Nutr. Diet. 2007, 20, 275–285. [CrossRef]

122. Scollan, N.D.; Dannenberger, D.; Nuernberg, K.; Richardson, I.; MacKintosh, S.; Hocquette, J.-F.; Moloney, A.P. Enhancing the
nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2014, 97, 384–394. [CrossRef]

123. Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E. Bioactivity
and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [CrossRef]

124. McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Fearon, A.M.; Moss, B.W.; Beattie, J.A.M.; Wallace, J.M.W.; Bonham, M.P.; Strain, J.J.
Red meat from animals offered a grass diet increases plasma and platelet n-3 PUFA in healthy consumers. Br. J. Nutr. 2011, 105,
80–89. [CrossRef]

125. European Comission. Nutrition Claims. Available online: https://ec.europa.eu/food/safety/labelling-and-nutrition/nutrition-
and-health-claims/nutrition-claims_en (accessed on 19 November 2021).

126. Kraft, J.; Kramer, J.K.; Schoene, F.; Chambers, J.R.; Jahreis, G. Extensive analysis of long-chain polyunsaturated fatty acids, CLA,
trans-18: 1 isomers, and plasmalogenic lipids in different retail beef types. J. Agric. Food Chem. 2008, 56, 4775–4782. [CrossRef]

127. Khan, N.; Cone, J.; Fievez, V.; Hendriks, W. Causes of variation in fatty acid content and composition in grass and maize silages.
Anim. Feed. Sci. Technol. 2012, 174, 36–45. [CrossRef]

128. Riuzzi, G.; Davis, H.; Lanza, I.; Butler, G.; Contiero, B.; Gottardo, F.; Segato, S. Multivariate modelling of milk fatty acid profile to
discriminate the forages in dairy cows’ ration. Sci. Rep. 2021, 11, 23201. [CrossRef] [PubMed]

129. Lee, M.R.F.; McAuliffe, G.A.; Tweed, J.K.S.; Griffith, B.A.; Morgan, S.A.; Rivero, M.J.; Harris, P.; Takahashi, T.; Cardenas, L.
Nutritional value of suckler beef from temperate pasture systems. Animal 2021, 15, 100257. [CrossRef] [PubMed]

130. Turner, T.D.; Jensen, J.; Pilfold, J.L.; Prema, D.; Donkor, K.K.; Cinel, B.; Thompson, D.J.; Dugan, M.E.; Church, J.S. Comparison of
fatty acids in beef tissues from conventional, organic and natural feeding systems in western Canada. Can. J. Anim. Sci. 2015, 95,
49–58. [CrossRef]

131. Bates, B.; Collins, D.; Jones, K.; Page, P.; Roberts, C.; Swan, G. National Diet and Nutrition Survey Rolling Programme Years 9 to
11 (2016/2017 to 2018/2019); Public Health England: London, UK, 2020. Available online: https://www.gov.uk/government/
statistics/ndns-results-from-years-9-to-11-2016-to-2017-and-2018-to-2019 (accessed on 18 February 2022).

132. NHS. Red Meat and the Risk of Bowel Cancer. Available online: https://www.nhs.uk/live-well/eat-well/red-meat-and-the-
risk-of-bowel-cancer (accessed on 1 December 2021).

133. Scientific Advisory Committee on Nutrition. Dietary Reference Values for Energy; The Stationery Office: London, UK, 2012.

http://doi.org/10.1016/j.fufo.2021.100012
http://doi.org/10.1016/j.foodchem.2008.10.041
http://doi.org/10.1016/j.meatsci.2004.11.018
http://doi.org/10.1146/annurev-food-111317-095850
http://doi.org/10.1111/j.1365-277X.2004.00552.x
http://doi.org/10.1016/j.meatsci.2014.02.015
http://doi.org/10.1016/j.meatsci.2020.108114
http://doi.org/10.1017/S0007114510003090
https://ec.europa.eu/food/safety/labelling-and-nutrition/nutrition-and-health-claims/nutrition-claims_en
https://ec.europa.eu/food/safety/labelling-and-nutrition/nutrition-and-health-claims/nutrition-claims_en
http://doi.org/10.1021/jf8001813
http://doi.org/10.1016/j.anifeedsci.2012.02.006
http://doi.org/10.1038/s41598-021-02600-9
http://www.ncbi.nlm.nih.gov/pubmed/34853357
http://doi.org/10.1016/j.animal.2021.100257
http://www.ncbi.nlm.nih.gov/pubmed/34087691
http://doi.org/10.4141/cjas-2014-113
https://www.gov.uk/government/statistics/ndns-results-from-years-9-to-11-2016-to-2017-and-2018-to-2019
https://www.gov.uk/government/statistics/ndns-results-from-years-9-to-11-2016-to-2017-and-2018-to-2019
https://www.nhs.uk/live-well/eat-well/red-meat-and-the-risk-of-bowel-cancer
https://www.nhs.uk/live-well/eat-well/red-meat-and-the-risk-of-bowel-cancer

	Introduction 
	Beef Production Principles and Standards 
	Concentrate vs. Forage-Based Diets 
	Definitions for Feeding Systems in the Present Paper 

	Beef Quality 
	Fatty Acids 
	Saturated Fatty Acids 
	Monounsaturated Fatty Acids 
	Polyunsaturated Fatty Acids 
	Omega-3 Fatty Acids 
	Omega-6 Fatty Acids 
	Omega-6:Omega-3 Ratios 
	CLA 


	Origins of Fatty Acids in Meat 
	Effect of Feed System on Meat Fatty Acid Profile 
	Saturated Fatty Acids 
	Monounsaturated Fatty Acids 
	Polyunsaturated Fatty Acids 
	Omega-3 Fatty Acids 
	Omega-6 Fatty Acids 
	Omega-6:Omega-3 Ratio 
	CLA 


	Human Health Implications 
	Conclusions 
	References

