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Abstract: Endometrial cancer (EC) incidence and mortality continues to rise. Molecular profiling of
EC promises improvement of risk assessment and treatment selection. However, we still lack robust
and accurate models to predict those at risk of failing treatment. The objective of this pilot study is
to create models with clinical and genomic data that will discriminate patients with EC at risk of
disease recurrence. We performed a pilot, retrospective, case–control study evaluating patients with
EC, endometrioid type: 7 with recurrence of disease (cases), and 55 without (controls). RNA was
extracted from frozen specimens and sequenced (RNAseq). Genomic features from RNAseq included
transcriptome expression, genomic, and structural variation. Feature selection for variable reduction
was performed with univariate ANOVA with cross-validation. Selected variables, informative for
EC recurrence, were introduced in multivariate lasso regression models. Validation of models
was performed in machine-learning platforms (ML) and independent datasets (TCGA). The best
performing prediction models (out of >170) contained the same lncRNA features (AUC of 0.9, and
95% CI: 0.75, 1.0). Models were validated with excellent performance in ML platforms and good
performance in an independent dataset. Prediction models of EC recurrence containing lncRNA
features have better performance than models with clinical data alone.

Keywords: endometrial cancer; recurrence; prediction; machine learning

1. Introduction

Endometrial cancer (EC) is the most common gynecologic malignancy in developed
countries. It is estimated that 65,950 new uterine cancer cases will be diagnosed in the
United States in 2022, accounting for 12,550 deaths [1]. Unlike other cancer types, incidence
and mortality of EC have been increasing for the last 2 decades [1]. This is mainly considered
due to an aging population and increased rates of obesity and metabolic syndrome [2].
Obesity contributes to an endogenous unopposed estrogen environment and is the single
most important risk factor for EC [2]. The increase in EC mortality has been projected to
rise another 55% by 2030 due to the obesity epidemic [3].

In addition, over the last 2 decades the evidence from important clinical trials have
changed standards of treatment for low-risk and low–intermediate-risk EC (PORTEC 1,
and GOG 99) [4,5], high–intermediate-risk EC (PORTEC 2 and ASTEC) [6,7], and high-
risk EC (PORTEC 3, GOG 249, and GOG 258) [8–11]. Despite those advances, treatment
failure occurs in approximately 10–15% of patients with early stage EC. Although non-
endometrioid variants, such as serous and clear cell carcinomas, comprise <10% of all
diagnoses, they account for a disproportionately high number of EC recurrences and
cancer-related deaths [12]. However, the majority of treatment failures and recurrences
occur in endometrioid EC type (EEC) and prognosis remains poor for these women, with
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the exception of patients with isolated vaginal recurrence [12,13]. Thus, identifying patients
who might benefit from additional surveillance and treatment to prevent recurrence and
reduce mortality from this disease would be of great value.

The Cancer Genome Atlas (TCGA) identified molecular features that were found
to categorize EC tumors into different levels of risk [14,15]. Later, the Post-Operative
Radiation Therapy in Endometrial Carcinoma (PORTEC) Study Group included some of
these molecular features to design its latest trial, 4a (NCT03469674). In this trial, standard
adjuvant treatment with vaginal brachytherapy for women with high–intermediate-risk EC,
is compared with individualized adjuvant treatment based on a molecular-integrated risk
profile [16]. However, with this molecular assessment, almost 60% of patients presented a
‘no specific molecular profile’ (NSMP) [17]. Prior studies have also used clinical and patho-
logical characteristics to stratify risk for recurrence and to inform adjuvant treatment [18,19].
Despite these studies, to date, there is no standard, validated, and accurate model that
assesses individual risk of recurrence for patients with EC. Previous attempts reported
accuracies between 60 and 73%, or area under the curve (AUC) around 80% [18,20]. Better
models are needed to identify 15% of those patients with early stage EC that are going to
need adjuvant treatment.

We hypothesize that integration of clinical and genomic data will improve prediction
models of recurrence in EEC. The objective of this pilot study is to create models with
clinical and genomic data that will discriminate patients with EEC at risk of recurrence from
disease. We validated these models in independent datasets (TCGA) and machine-learning
analytical platforms.

2. Results

The flow of included patients are depicted in Figure 1 and included patients character-
istics in Table 1.
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Figure 1. Flow of included patients in analysis. Of the initial 155 endometrial cancers available in the
UI Biobank, 127 were confirmed to be of endometrioid histology. The rest were excluded from the
study. A total of 62 patients had annotated follow-up with detailed recurrence information and with
quality RNA for RNA sequencing (RNA-seq).
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Table 1. Clinical patient characteristics. These are the baseline variables determined at treatment
completion and included in the analysis.

Recurrent
(N = 7)

Non-Recurrent
(N = 55) p-Value

Age (average) 61 61 0.983
BMI (average) 35.2 37.1 0.627
Charlson Index ** 0.720

Low (1–3) 0 9
Medium (4–6) 7 37

High (>6) 0 5
Personal History DM 1 13 0.582

Heart atack 0 1 0.995
CHF 0 1 0.995

Stroke 0 2 0.996
Pulmonary

disease 0 8 0.994

Other cancers 0 8 0.994
Grade 0.731

1 2 23
2 4 20
3 1 10

Lymphovascular involvement 0.208
No 4 42
Yes 3 11

MI (average) 69.3 36.6 0.029 *
Cytology 0.450

No 5 50
Yes 1 4

Stage 0.009 *
I 1 43
II 1 3
III 5 6
IV 0 3

Adjuvant Radiation (any type) 0.150
No 3 39
Yes 4 16

Tobacco use, pre-operative Hgb, creatinine, WBC, albumin, type of surgery -open or minimally invasive-, surgical
complications (including blood loss), and length of stay were not significantly different. BMI: body mass index; MI:
myometrial invasion. * Statistically significant with p-value < 0.05. ** Charlson Comorbidity Index is a measure of
the prognostic burden of all associated morbidities to predict mortality and is the most validated measure of the
prognostic impact of multiple chronic illnesses (www.charlsoncomorbidity.com (accessed on 30 July 2022)).

2.1. Creation of Prediction Models of EEC Recurrence

After RNA extraction, sequencing and analysis, we determined a series of genomics
features that were used for the prediction analysis: (a) from the extracted transcriptome:
gene, long non-coding RNA (lncRNA) and single exon expression; (b) we determined
genomic variation, including single nucleotide variation (SNV), copy number variation
by gene (CNV), and copy number variation by chromosomal region. Additionally, we
identified structural variation (SV), including fusion transcripts (FT), retained introns (RI),
novel exon/junction (NEJ), and unknown or previously not reported SV (UNK). After
the univariate analysis with cross-validation of all genomic features, we found those
characteristics that were more informative of EC recurrence (Figure 2). These significant
features were later introduced in prediction models of recurrence.

www.charlsoncomorbidity.com
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Figure 2. Included patients. (A) Heatmap of selected variables after univariate ANOVA analysis.
Representation of the significant variables after univariate analysis (p < 0.05) for different types of
genomic data. Recurrent cases are at the left side of the panel (under the light green bar); non-recurrent
cases are at the right (white bar). Of the 22 clinical features introduced in the lasso analysis, only stage
was informative for recurrence (upper part of the panel, color coded from 1 to 4). Transcriptome: DEX:
exon expression; lncRNA: long non-coding RNA; Exp: gene expression. Genomic variation: SNV:
single nucleotide variation; CNV: gene copy number by gene; CNVreg: copy number by chromosomal
region; Structural variation: FT: Fusion transcripts; RI: Retained intron; NEJ: Novel exon/junction;
U-SV: Unknown SV. At the right side of the panel are the labels and the color-coded range of values
for all genomic variables. (B) Variable selection and variables after univariate analysis. To reduce
the number of variables, we used univariate analysis of all data with ANOVA to select the variables
that were more informative for prediction of response, with a p-value < 0.05 (3rd column). * Lasso
regression was performed directly with no pre-reduction with ANOVA because the smaller number
of variables in two types of data: clinical data and copy number by chromosomal region. Graphics
were generated with R package ComplexHeatmap [21].

Next, we built prediction models for recurrence. Initially we constructed them with
only one feature. Then, we made models with two and three different sets of variables.
Adding four or more variables did not improve prediction models and added complexity
to the system (Figure 3). In total, we built over 170 models to predict EEC recurrence
(Supplementary Figures S1 and S2). In Figure 3, we represented the 30 models with one or
two types of variables with the best performance measured by AUC (Figure 3A), and the
30 best performing models with three types of variables (Figure 3B). If we consider that
clinical data is the best way to assess risk of recurrence up to now, potentially superior
models are those with a performance, measured by AUC, over 0.75, which is the basic
clinical model performance (Figure 3A in lighter blue).

Notably, all best models included lncRNA data. Moreover, the model with only
lncRNA had an AUC of 0.9 (95% CI 0.75–1.0) and adding more clinical or genomic data
to the model did not improve the performance (Figure 3). No matter how many types of
variables were added to lncRNA data, the multivariate regression lasso model ended up
with the same five lncRNAs: ENSG00000274840, ENSG00000240137, ENSG00000250137,
ENSG00000253622, and ENSG00000258240. So, comparing all models, the simplest model
with only lncRNA turned out to have one of the best performances, with an AUC of 0.9,
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and the same final five variables at the end of the lasso analysis than more complicated
models with more types of data (Figure 4). This simplest, best-performing model would be
the one with potential to improve the only clinical model.
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Figure 3. Performance of prediction models of EEC recurrence. (A) The solid vertical bar represents
the number of types of data: 1 (yellow): only one variable was included in the model; 2 (orange):
combination of two types of variables; (B) The solid vertical maroon bar represents the combination
of three types of variables. Different performances on both panels are displayed in ascending order.
The x axis is AUC as a percentage (0–100%). The red error mark displays the 95% confidence interval
(CI). Overall, 72 models with different combinations of data were tested. We only displayed the best
(A) 30 models for combinations of one and two variables and (B) 30 best models for combinations
of three types of variables. Exp: gene expression; DEX: exon expression; lncRNA: long non-coding
RNA; SNV: single nucleotide variation; CNV: gene copy number by gene; CNVreg: copy number by
chromosomal region; FT: Fusion transcripts; RI: Retained intron; NEJ: Novel exon/junction; UNK:
Unknown SV. Graphics were generated with R package ggplot.

2.2. Validation of Prediction Models of EEC Recurrence

Validation of the best performing model was performed with different analytical
platforms and with an independent dataset (TCGA).

2.2.1. Validation of Models with Machine Learning (ML)

We validated the best model with two different ML analytical platforms. The first one
used TensorFlow, and we tested the model with (Figure 5A) and without (Figure 5B) FIGO
Stage. The performance of both were excellent, with AUC of 1.00, and accuracies over 85%.
For the second ML platform we used the suite MATLAB and its ML App. The App has
over 30 ML methods than can be used in parallel to assess the accuracy of a model. Again,
both AUC and accuracies were excellent (100%) for the model with lncRNA data and FIGO
Stage (Figure 5C) and for the one with only five lncRNAs (Figure 5D).
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Figure 4. Best prediction model and comparison with clinical model. (A) The lasso multivariate
regression model with clinical variables: out of the two clinical variables included in the model,
only Stage remained as informative for prediction of EEC recurrence after the analysis, with an
increased risk for recurrence as stage increases. (B) Graphic representation of the clinical lasso
analysis: superior margin reflects number of variables; left margin reflects performance of the model
measured in AUC (area under the curve); lower margin reflects lambda tunning parameter chose by
cross-validation to optimize the model. The optimized AUC was 0.75 (95% CI: 0.68, 0.86), between
the dotted lines. (C) Graphic representation of the lncRNA data lasso analysis (same margins and
design as before): optimized AUC of 0.9 (95% CI: 0.75, 1.00). (D) The lasso multivariate regression
model with lncRNA data: out of the 544 clinical variables included in the model, five single lncRNAs
remained as informative for prediction of EEC recurrence. Four of them increased risk (OR > 1) and
one protected from recurrence (OR < 1). Graphics were generated with R package glmnet.

In summary, in this validation analysis, the best predictive model for EEC recurrence
seems to be robust enough throughout different analytical methods and platforms. Addi-
tionally, adding clinical data (FIGO stage) to lncRNA data did not improve the performance
of the validation model.

2.2.2. Validation of Models with TCGA Dataset

Finally, we validated our best model with an independent, publicly available dataset,
TCGA, with 406 EEC patients, 346 non-recurrent, and 60 recurrent. Patients’ characteristics
of this dataset were similar to our study population and can be reviewed in the Supplemen-
tary Figure S3. After extracting lncRNA data from the original BAM files, we selected the
five lncRNAs that were driving the prediction model and tested them in the TensorFlow and
MATLAB ML platforms. It had an accuracy of 78% and 86%, respectively, with also good
AUC of 0.68 and 0.78 (Supplementary Figure S4). Therefore, our best model also performed
well in an independent dataset (TCGA).
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Figure 5. (A) Validation of the best model with lncRNA data and FIGO Stage clinical variable (the
most informative in the clinical model). These are the results after training and validating the model
with TensorFlow in 75% of the samples, and then performing testing on the remaining 25% of the data.
We are showing the testing results. The left panel shows the confusion matrix representing the true
(True Class) versus the predicted values (Predicted Class). The right panel is an ROC graphic: true
positives in the x axis, false positives in the y axis, and AUC results. Train R: results of unbalanced (or
re-sampling) model training; Test R: results of re-sampling model testing. AUC of 1.00 and accuracy
of 0.92. Recur: recurrent; Non-R: non recurrent. (B) Validation of the best model with only lncRNA
data and no clinical variables. As before, we are showing testing results in 25% of the data, after
training and validating have been performed with TensorFlow. Left and right panels are as before.
AUC of 1.00 and accuracy of 0.85. (C) Validation of the best model with lncRNA data and FIGO
Stage clinical variable performed with MATLAB platform. We are showing testing results in 20% of
the data, after training and validating have been performed. MATLAB offers over 30 methods for
its machine learning (ML) App. In four of them the accuracy of testing was 100%, as shown in the
graphic. Specifically, this is the coarse Gaussian SVM (support vector machines) method. Left and
right panels are as before. AUC of 1.00 and accuracy of also of 1. (D) Validation of the best model
with only lncRNA data and no clinical variables with MATLAB platform. Parameters are as before.
This time, most methods had a testing accuracy of 100%. Showing the linear SVM method. Left and
right panels are as before. AUC of 1.00 and accuracy of also of 1.

3. Discussion

Our pilot study found that all best prediction models of EEC recurrence contained
lncRNA features, and specifically five lncRNAs. The simplest, best performing model
contained only five lncRNAs and was as accurate as more complex models. Furthermore,
the lncRNA model was superior to the model with only clinical data (AUC of 0.9 versus
0.75, respectively) and with a 95% CI that reached 1.0. If these results were to be validated
in future studies this would result in an accurate and robust model that could discriminate
which EEC patients would be at risk of initial treatment failure at the time of surgery. This
would leave healthcare professional with plenty of time to design alternative adjuvant
treatments to prevent these outcomes.

As we hypothesized previously, integration of clinical and genomic data improves
prediction models of EEC recurrence, with AUC performances of 0.9, and CI reaching 1.00.
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Integration of complex data is a difficult task, but the results could be very valuable [22,23].
It requires a constant dialogue between basic scientists, clinicians, statisticians and bioin-
formaticians to build models that are clinically and scientifically meaningful [24]; models
that predict clinically significant outcomes that can be actioned upon. Our goal was to
identify EEC patients at risk of recurrence who might benefit from additional surveillance
and treatment to prevent relapse and reduce mortality from this disease. Our prediction
models achieved that goal.

As noted initially, EC trials incorporated pathological prognosticators to determine
postoperative radiation, as initial attempts to individualized therapy [4–11,25]. How-
ever, treatment failures still seemed to burden low-risk patients determined by pathology,
though the percentage was superior in high-risk women [12,13]. Molecular profiling of
EC promised improvement in risk assessment and treatment selection, especially after the
TCGA initiative [14,15]. TCGA described four groups that had different molecular features:
POLE ultra-mutated, microsatellite-instability-hypermutated, copy-number-low, and copy-
number-high EC. Later, these groups were modified to make the molecular determination
more feasible and affordable—the Proactive Molecular Risk Classifier or ProMisE [26]. The
resulting groups seemed to correlate well with disease prognosis [17,26], and have been
used to design new EC trials [16]. However, several questions remain to be addressed.
The first one is the high number of unclassifiable EC, as much as 59% by one of these
studies [17], and whether pathology prognostic factors should be applied to these cases.
Additionally, when reviewing the prediction performance of these molecular features,
prediction of recurrence for all models varied from 60–75% [27], which are not superior
to clinical models [18,20]. Recent ESGO/ESTRO/ESP guidelines for EC management [28]
stated that molecular classification could impact clinical management, especially in cases
with high-grade/high-risk disease. However, they recognized that the molecular classifier
is not perfect, and there is room for improvement for those patients with low-risk and/or
unclassifiable molecular features. This is where our prediction model could help, in EEC
patients with seemingly low-risk disease and unclassifiable molecular features, which are
the majority.

LncRNAs have regulatory functions [29,30]. They participate in epigenetic regulation,
maintain chromatin structure, and modulate transcription [30,31]. There is increasing
reporting of the function that lncRNA have in the development and progression of EC [32].
The development of EC is a complicated biological process and lncRNAs may act as
oncogenes or tumor suppressors. Their expression may contribute to EC transformation
and the subsequent progression. Gene expression experiments have previously demon-
strated that a large number of lncRNA expression is altered in EC [33]. Therefore, it is
not surprising that some lncRNAs were selected in the univariate analysis because of
their difference in expression between recurrent and non-recurrent samples. Furthermore,
some of the lncRNAs present in our best model have been described previously in sev-
eral cancers, ENSG00000274840, ENSG00000240137, and ENSG00000253622 [34–36], and
ENSG00000250137 have been associated with increased BMI [37]. Our best model may be
reflecting the underlying biological characteristics of the recurrent EEC phenotype.

The strengths of our study include our use of a comprehensive genomic characteriza-
tion of EEC samples, including genomic variation and structural variation to determine
the best prediction model of EEC recurrence. Additionally, we used proven statistical
methods that employed internal validation with cross-validation for feature selection to
avoid model over-fitting. Finally, we performed external validation with diverse analytical
platforms, including the use of ML, and different and independent datasets of EEC (TCGA)
analyzed with identical methods and software, also described previously [38,39]. It should
be mentioned that genomic variation, specifically SNV and CNV, are better determined
with DNA sequencing. Extracting genomic variation from RNAseq is an estimation of the
real somatic variation (~75% of the variants) [40,41], but it served the purpose of this study
and prevented cost scalation. In the end, no SNV or CNV were in the best model of EEC
recurrence prediction.



Int. J. Mol. Sci. 2022, 23, 16014 9 of 14

One of the potential limitations of the study is the relativity low number of recurrent
EEC that have complete clinical and genomic data in our dataset. Recurrence of EEC
range between 10–15% [12], and even larger genomic databases, such as TCGA, have a
low and unbalanced number of recurrent cases that may affect any prediction model. To
adjust for this low and unbalanced number of recurrent cases, we validated all models
with ML analytics that specifically account for this issue by resampling data during model
training, validation, and testing [42]. Our best model is the result of a well-studied EEC
population [43–46] that has been well annotated and followed over the years. We are
a state-sponsored University, which receives and serves the vast majority of patients
with gynecological cancer in the State of Iowa. However, as the population of Iowa is
predominantly white, 92% of patients included in the study were white. The lack of
diversity of our selected subjects is a potential limitation of our analysis that may influence
the generalizability of the study to other states where there is more diversity. In a previous
study comparing our population with TCGA population, we identified differences in the
admixture of both cohorts [46]. These differences may have an effect on the performance
and validation of the model outside Iowa. Other limitation of the study may arise from
inherited biases of retrospective studies, mainly recall biases. Due to losses in follow-up,
some of the recurrences could be under-reported. However, we are more concerned with
the surveillance of TCGA EEC patients that may influence the performance of validation
analysis. Finally, we have to be aware of potential overfitting of our recurrence prediction
model, either to our own population and/or to our own data. To avoid this issue, the
performance of the model has to be confirmed in a new prospective set of diverse EEC
patients where the phenotype is known confidently. Until then, the model should not be
used clinically.

4. Materials and Methods
4.1. Study Design

We performed a retrospective, single institution, case–control study in which we
included 62 patients with EEC from 1991 to 2010 available in our biobank with pre-operative
and intra-operative clinical data. RNA was extracted from tumor specimens and processed
as detailed below to obtain the necessary genomic data. Clinical and genomic data were
then combined to create predictive models using statistical learning to identify criteria
which accurately predicted recurrence for EC patients.

4.2. Ethics and Tissue Procurement

Tissue samples and clinical outcome data were obtained from the Department of Ob-
stetrics and Gynecology Biobank (IRB, ID#200209010), which is part of the Women’s Health
Tissue Repository (WHTR, IRB, ID#201804817). All tissues archived in the Gynecologic
Oncology Biobank (herein termed Biobank) were originally obtained from adult patients
under informed consent in accordance with University of Iowa IRB guidelines. Tumor
samples were collected, reviewed by a board-certified pathologist, flash-frozen, and then
the diagnosis was confirmed in paraffin. All experimental protocols were approved by the
University of Iowa Biomedical IRB-01.

4.3. Clinical Data Procurement

Clinical data was extracted from the electronic medical record. Table 1 summarizes the
baseline clinical and pathologic characteristics. Only data that were available by the end of
initial treatment were used in the development of predictive models. Pre-operative char-
acteristics included age at diagnosis, body mass index (BMI), pre-operative hemoglobin,
serum creatinine, albumin, comorbidities (coronary artery disease, diabetes mellitus, con-
gestive heart disease, history of cardiovascular accident, tobacco use), and Charlson mor-
bidity index. Intraoperative characteristics included type of surgery (laparoscopic, robotic,
laparotomy, vaginal), operative time, and estimated blood loss. Post-operative characteris-
tics extracted included final pathology diagnosis, disease stage, estrogen and progesterone
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receptor status, surgical complications, adjuvant therapy (including types of radiation
therapy), and recurrence of disease.

For the purposes of this study, we defined disease recurrence as EEC diagnosed in any
location after completing treatment and a subsequent period with no evidence of disease.
Of the 62 EEC patients with clinical and genomic information included in the study, 7 had
a recurrence of disease. Two patients had an advanced stage with persistence of disease
after initial treatment and, by the study definition, they were considered as non-recurrent.
All patients recurred within 5 years; 86% of them experienced a recurrence within 2 years
of initial treatment. Differences between clinical variables among both study groups were
assessed by logistic regression (significance at p-value < 0.05).

4.4. Genomic Analysis
4.4.1. Included Subjects

A cohort of 127 patients diagnosed with EEC at UI was assembled under approval
by the Institutional Review Board (IRB# 201607815). Only patients with a confirmed
EEC diagnosis, with clinical follow-up and biological specimens with quality RNA for
sequencing, were included in the study. The flow diagram in Figure 1 summarizes patients
included in this study.

4.4.2. RNA Isolation and Sequencing

RNA was then isolated from these tumor specimens. RNA extraction, processing
and sequencing have been described previously [39,43]. In brief, total cellular RNA was
extracted from primary tumor tissue using the mirVana (Thermo Fisher, Waltham, MA,
USA) RNA purification kit. The RNA yield and quality were assessed with Trinean
Dropsense 16 spectrophotometer and Agilent Model 2100 bioanalyzer. RNA quality was
determined to be adequate if the sample had an RNA integrity number (RIN) of 7.0 or
greater. Samples that were of adequate quality were then sequenced. 500ng of RNA was
quantified by Qubit measurement (Thermo Fisher). RNA was then converted to cDNA and
ligated to sequencing adaptors with Illumina TriSeq stranded total RNA library preparation
(Illumina, San Diego, CA, USA). cDNA samples were then sequenced with the Illumina
HiSeq 4000 genome sequencing platform using 150 bp paired-end SBS chemistry. All
sequencing was performed at the Genome Facility at the University of Iowa Institute of
Human Genetics (IIHG).

4.4.3. Data Preprocessing

STAR was used to align the RNAseq reads to the human reference genome (version
hg38) [47]. We then created BAM files after alignment. FeatureCount was used to measure
gene expression [48]. The DESeq2 package was used to import, normalize, and prepare
the gene counts for analysis [49]. ENSEMBL was used to annotate single exons within
the gene expression alignment analysis. Exon expression was then evaluated using the
DEXSeq package [50]. BAM files for each sample were used to estimate SNV discovery
and base-calling against the human genome reference utilizing SAMtools and BCFtools
for sorting and indexing. Results were filtered for duplicates, known non-synonymous
single-nucleotide variants, and synonymous variants and then annotated with ANNOVAR.
Gene CNV were estimated using SAMtools and superFreq [40]. BAM files were then used to
identify lncRNA, as described previously [51,52]. Lastly, fusion transcripts were determined
using the STAR-Fusion suite from fastq files [53]. Supplementary Figure S5 depicts each
program used for RNA processing and the identification of various genomic components.

4.5. Statistical Analysis

Most genomic data were used as continuous variables, except SNV and structural
variation features, which were used as dichotomous variables. To select those variables
most informative for prediction of EEC recurrence, we used univariate analysis with
ANOVA (p < 0.05) and cross-validation with 10 replicates for each fold, as implemented by
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the caret R package and detailed previously [39]. Significant predictive variables were then
used in a multivariate lasso regression prediction model (statistical learning). Thus, poorly
annotated variables were removed from model construction.

4.5.1. Creation of Prediction Models of EEC Recurrence with Statistical Learning

Significant variables from the univariate analysis were then incorporated into multi-
variate lasso (least absolute shrinkage and selection operator) regression prediction models
of recurrence. Initial models included only significant variables from one category of
clinical or genomic data (i.e., lncRNA expression, gene expression, CNV, etc.). Variables
were then progressively combined to create more complex prediction models. Multivariate
prediction models were fit with lasso as implemented in the glmnet R package [54], and
detailed previously [38,39]. Performances of prediction models were measured with area
under the receiver operating characteristics curve (AUC) and their respective 95% con-
fidence intervals (CI) and estimated with 1000 replicates of ten-fold cross-validation to
avoid over-fitting. Bias-corrected and accelerated bootstrap CIs were computed for each
model. AUC of 0.5 indicates no predictive ability of a model and 1.0 represents perfect
predictive performance.

4.5.2. Validation of Predictive Models with Machine-Learning Methods

For validation of the best prediction models of recurrence in a machine-learning
platform we used TensorFlow [55] in a Jupyter notebook with a Keras application program-
ming interface (API) [42]. TensorFlow code was modified from a tutorial (found here:
https://www.tensorflow.org/tutorials (accessed on 25 October 2022)). Training, validating,
and testing were performed to account for weights of the outcomes as well as for unbal-
anced data (mainly for complete vs. optimal patients). Additionally, we validated the best
prediction models in MATLAB machine learning app, where there are over 20 classifier
methods. Model from UI were validated in this new analytical platform and later was
validated in EEC TCGA dataset.

4.5.3. Validation of Predictive Models with Independent Data, TCGA

Data from TCGA dataset for endometrial EC were downloaded from the National
Cancer Institute (NCI) database in accordance with TCGA Human Subject Protection and
Data Access Policies, adopted by the NCI and the National Human Genome Research Insti-
tute (NHGRI). Data were downloaded with the NCI database of genotypes and phenotypes
approval (dbGaP#16003) as previously described [43]. Patients with non-endometrioid
histology were excluded. Clinical and molecular data were obtained from 406 patients
diagnosed with EEC, of which 60 experienced recurrence of disease as defined above
(Supplementary Table S4. Original downloaded BAM files were then used to identify
lncRNAs, as described previously [51,52].The best-performing parameters were used to
fit a final score of that model to the entire TCGA cohort [39]. Performances measured
by AUC between 0.8–0.9 were considered ‘very good’; performances between 0.9–1 were
considered ‘excellent’.

5. Conclusions

Prediction models containing lncRNA features have better performance, measured by
AUC, than models with clinical data alone. These models must be validated in prospective
manner and different populations before their use in clinical settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232416014/s1.
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