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Abstract: As catastrophic phenomena, landslides often cause large-scale socio-economic 

destruction including loss of life, economic collapse, and human injury. In addition, 

landslides can impair the functioning of critical infrastructure and destroy cultural heritage 

and ecological systems. In order to build a more landslide resistant and resilient society, an 

original GIS-based decision support system is put forth in order to help emergency 

managers better prepare for and respond to landslide disasters. The GIS-based landslide 

monitoring and management system includes a Central Repository System (CRS), Disaster 

Data Processing Modules (DDPM), a Command and Control System (CCS) and a Portal 

Management System (PMS). This architecture provides valuable insights into landslide 

early warning, landslide risk and vulnerability analyses, and critical infrastructure damage 

assessments. Finally, internet-based communications are used to support landslide disaster 

modelling, monitoring and management. 
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1. Introduction  

As catastrophic events, the large-scale devastation caused by landslides is well-known: human 

injury and death, economic dislocation, environmental impacts, and the loss of cultural and natural 

OPEN ACCESS 



Remote Sensing 2010, 2                  

          

2260 

heritage. In August 2010, floods and landslides across Asia have killed hundreds. In China, the worst 

seasonal flooding in a decade caused the debris-blocked Bailong River to overflow its banks creating a 

three-kilometer-long lake that sent mud, rocks and water crashing into communities in Northwest 

China, ripping houses from their foundations. Over three hundred Chinese have already been killed by 

the resulting massive landslides, with over one-thousand missing. More than four thousand first 

responders and medical staff have been sent to the area, as well as helicopters and other emergency 

vehicles. Other countries throughout Asia are also facing dire emergencies: At least and four million 

Pakistanis are currently facing food shortages amid their country’s worst-ever flooding, while flash 

floods in Indian Kashmir have already killed 132 and high waters have washed away homes and 

damaged crops in North Korea. 

Landslides also affect developed nations. In February 2010, massive mudslides on Portugal’s 

Atlantic island of Madeira (located approximately 900 km southeast of Portugal) killed 38 people. 

More recently, over 1,500 people have been evacuated from Pemberton, BC, Canada due to an August 

6, 2010 landslide that blocked Meager Creek. A large body of landslide research has investigated the 

modeling and management of landslide disasters with a focus on slope instability and landslide 

probabilities [1-9], field instrumentation [10,11], precipitation thresholds [12,13], the modeling and 

field investigations of specific landslides [14-16], and plans for mitigating landslide hazards [17-21]. 

Key features of landslide modeling software include slope stability analyses, landslide assessments and 

debris flows estimates. For example, the United States Geological Survey’s (USGS) Stability Index 

Mapping (SINMAP) model, a GIS ArcView extension, computes and maps a slope stability index 

using digital elevation data. The SINMAP model has been used to identify landslide prone regions of 

West Central Idaho [22,23]. A number of tools are now available which allow landslide monitoring 

and management results to be displayed in a GIS. Two widely used three dimensional landslide digital 

elevation/terrain models (digital representation of ground surface topography) include the  

slope-stability model (SCOOPS) and the debris-flow inundation model (LAHARZ) [24-27]. Coupling 

these existing systems would help to predict the location and size of potential landslides and to model 

expected inundation areas from the resulting debris flows. Extensive research has been conducted on 

the causes, mechanisms, and distribution of landslides in order to provide a better understanding of 

landslide hazard and risk. This involves field-based landslide mapping landslides, the investigation of 

soil properties, computer modeling of rock slope stability and the impacts of groundwater on 

potentially unstable slopes [28-32]. For example, the Canadian Centre for Natural Hazard Research 

(CNHR) is involved in documenting of landslide frequency, intensity, and timing. 

The proposed landslide disaster management system provides a solution to some of the most 

pressing and important problems associated with the development of landslide systems including 

incompatible platforms and database formats. Specifically, an original, efficient, cost-effective and 

integrated landslide management system is put forth. This integrated, real-time and interactive 

landslide system provides a reliable and scalable architecture that links various satellite, airborne and 

ground devices in order to facilitate disaster early warning, situational analysis, damage analysis and 

emergency management (including landslide identification, delineation and response). The system is 

comprised of three key components: a geo-database, application development modules, and an 

internet-based communication system. Multispectral and hyperspectral imaging systems are used to 

identify land surface parameters and to analyze slopes, drainage, land cover, road networks and other 
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features. This original system will allow for improved command, control, and communication, thereby 

improving situational awareness, reducing landslide disaster risk and meeting unique client demands.  

2. System Components and Functionalities 

Figure 1 shows the schematic design and operational framework of the real-time landslide 

monitoring and management system while Figure 2 presents the software and hardware configuration 

of the landslide monitoring and management system. The system architecture includes a Central 

Repository System (CRS), Disaster Data Processing Modules (DDPM), a Command and Control 

System (CCS) and a Portal Management System (PMS), as discussed below: 

(a) The Central Repository System (CRS) is composed of computer servers and database storage 

servers. ArcSDE v9.3 workgroup geodatabase and Oracle 10g database servers are used for 

storage and access management of spatial data. 

(b) The Disaster Data Processing Modules (DDPM) assist with landslide monitoring and data 

modeling. Image analysis and processing is performed using Geomatica 10.1 while disaster 

models have been developed in ArcGIS 9.3.  

(c) The Command and Control System (CCS) serves as a bridge between the portal system, the data 

processing modules and the central repository system. Predesigned forms were developed in 

JAVA Enterprise Edition (J2EE
TM

) 1.4 to link with the ArcGIS Server.  

(d) The Portal Management System (PMS) manages all incoming and outgoing data transactions 

through the CCS. The portal system is an internet based communication system which facilitates 

communications between all decision makers. It is a high-performance and secure messaging 

platform that provides extensive security features to ensure the integrity of communications 

through user authentication, session encryption, and content filtering. The portal system was 

developed using Java and ArcGIS server and supports GIS data transactions.  

The system receives information through satellite images, airborne data and ground surveys or 

devices. Specifically, high resolution (less than 3 meter) stereo SAR and optical images can provide 

important geomorphic slope data that is used in the creation of landslide inventory maps to improve 

landslide mitigation. Our landslide architecture provides real-time landslide data (i.e., rainfall data, 

flood levels, atmospheric conditions population data) to key decision makers in order to improve 

landslide modeling and overall situational analysis. Internet web technology is then used to link data 

directly to the central repository (which includes all tabular and spatial data required for landslide 

modeling as well as all thematic output products generated from disaster models). 
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Figure 1. Schematic Design and Operational Framework of the Landslide Monitoring and 

Management System. 

 

Figure 2. Landslide Monitoring and Management System Configuration. 
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3. Case Study Area  

The original landslide system was tested as a pilot project for Penang Island in the Straits of 

Malacca, situated in the northwest of peninsular Malaysia (Figure 3). Here, the warm and sunny 

tropical rainforest climate is governed by two monsoon seasons (between March and May and from 

November to December) which bring plentiful rainfall—between the two monsoon seasons there are 

brief transitional periods [33]. The average maximum monthly temperature ranges from 30.4 °C (from 

September to November) to 32.2 °C (in February and March). The highest average monthly rainfall in 

Panang occurs in October (383 mm) [34]. The climate of the island of Penang is determined to a large 

extent by the surrounding sea and the wind climatic systems. 

Figure 3. Location of the study area and topography. 

 

3.1. Input Data 

GIS layers such as administrative boundaries, transportation networks, population distributions, and 

river networks have been extracted from topographic maps at the scale of 1:25,000 in dxf format. In 

order to improve emergency response, evacuation centers throughout Penang Island were identified. 

Seventeen input GIS layers were used, including the location of previous landslide hazards, slope 

angle (in degrees), aspect directions, curvature values, and the distance from drainage areas. A detailed 

description relating to the type, format, and attributes of each layer is described in Table 1. Contour 

maps were extracted from topographic data and the Triangular Irregular Network (TIN) was generated 

from contours. Subsequently, the Digital Elevation Model (DEM) was constructed from the TIN. 

Table 1 and Figure 4 present spatial data and specifications stored in the Central Repository System 

(CRS). 
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Table 1. General Database Stored in the Central Repository System (CRS). 

GIS Layer Type Format 
Field 

Attribute 

Description 

Landslide 

location  
Point Vector ID 

Location of previous landslide hazards were 

mapped from the aerial photographs at the scale 

of 1:10,000–1:50, 000 

Slope Grid Raster Value 
Slope Angle in degrees extracted from 

topographic data; Scale 1:25,000 

Aspect Grid Raster Value 
Aspect direction extracted from topographic 

data; Scale 1:25,000 

Curvature Grid Raster Value 
Curvature value extracted from topographic data; 

Scale 1:25,000 

Distance from 

drainage  
Grid Raster Value Distance from drainage ; Scale 1:25,000 

Lithology  Polygon Vector Types 
Litho types extracted from lithologyogy maps; 

Scale 1:63,300 

Lineament  Line Vector Length 
Distance from lineaments extracted from 

topographic data; Scale 1:25,000 

Soil Type Polygon Vector Type 
Soil texture types extracted from soil map; Scale 

1:100,000 

Land Use  Polygon Vector Type 
Land use Types extracted from topographic and 

SPOT-5 data; Scale 10m×10m 

NDVI  Grid Raster Value 
Vegetation Index NDVI value from SPOT-5 

data; Scale 10m×10m 

Precipitation  Grid Raster Value 
Precipitation (Historical Rainfall) amount;  

Scale 10m×10m 

Transportation  
Line Vector Type 

Road networks, highways and railways extracted 

from topographic data; Scale 1:25,000 

Administrative 

Boundaries  
Line Vector Length 

Administrative areas extracted from topographic 

data; Scale 1:25,000 

Contour 

(DEM) Grid Raster Value 

Terrain elevation using 10-meter interval 

contours and survey base points extracted 

topographic maps; scale 1:25,000 

Settlement 
Polygon Vector Type 

Residential, public and administration buildings 

extracted from topographic data; Scale 1:25,000 

Population  
Grid Vector Value 

Population Densities Scale 1:25,000 data 

collected from statistic department. 

Emergency 

Resources  
Polygon Vector Type 

Emergency and mitigation resource locations 

including: Fire Fighter Stations, Police Stations, 

Hospitals, Schools, Religious Centers, Town 

Halls/Cultural, Airports, Army Base, Stadium, 

Open Fields 
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Figure 4. Spatial Data and Maps for the Landslide Disaster Modeling Stored in the Database. 
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Figure 4. Cont. 
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calculate the frequency ratio, a table was constructed for each landslide factor. A correlation analysis 

was carried out and the spatial relationship between landslide locations and each landslide factor  

was extracted. 

Table 2. Landslide disaster analysis in GIS Environment, input/output products and specifications. 

 Model/System Thematic Layers/Input Functionalities 

1. Landslide Hazard 

Map  

- Landslide Distribution  

- DEM 

- Road – Road Buffering 

- River – River Ordering 

- Lithology Structure 

- Soil Map 

- Landcover/Landcover 

- Rainfall 

 Predict future landslide areas 

(Integration of susceptibility in association 

with rainfall). Map shows hazard classes and 

distribution. 

2. Areas affected by 

Landslides 

- Administrative Boundaries 

- Transportation 

- Settlement 

- Landcover/Landcover 

 Provides information on the areal extent 

and location of a landslide event 

3. Landslide Risk 

Map 

- Landslide Hazard Map 

- Slope length 

- Flow accumulation 

- Catchment basin 

- Distance from high 

hazardous zone 

- Surface area 

- Landcover map 

(Settlement, agricultural 

land, urban and road class 

only) 

 Provides early warning information for 

disaster preparedness and mitigation. The 

map shows risk classes based on values and 

distribution of classes 

4. Improved 

Emergency 

Management  

- Landslide Risk Map 

- Emergency Response 

Assets 

 

 Provide information for emergency 

responders. Maps show the disaster location 

and extent in addition to the distribution of 

support centers and the availability of 

specific resources. 

The Frequency ratio (FR) is the ratio of the area where landslides occurred to the total study area 

(for a given landslide attribute). The frequency ratio is the percentage of the probabilities of a landslide 

occurrence to a non-occurrence for a given attribute. The following steps were carried out to calculate 

FR. First, a fine grid of 10m x 10m units was generated over the study area. For each grid, the 

Landslide Hazard Index (LHI) is defined as the summation of FR values for each attribute as shown in 

Equation 1, where n is the number of factors for each grid: 

LHI = ΣFr (1,…n)         (1) 

The average FR value is equal to one. Higher FR values represent stronger correlations landslide 

occurrence and a specific landslide factor [36,37]. The landslide susceptibility was calculated by the 
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classification of LHI values into appropriate classes for each 10m × 10m grid scale. Four different 

classes were defined: no susceptibility, the moderately susceptible class, the highly susceptible class 

and the extremely susceptible class. 

The landslide hazard map categorizes a region into various stability zones. Key information is 

included in the landslide hazard map, such as data about slope, curvature, drainage, lithology, land 

cover, soil, the vegetation index (NDVI) and rainfall. A hazard index classification for the landslide 

hazard map is calculated by dividing the land surface into regions that are not susceptible to landslides, 

moderately vulnerable to landslides, highly vulnerable to landslides and extremely vulnerable to 

landslides [36]. Using property values, four landslide risk zones were identified as shown in Figure 5. 

The risks associated with catastrophic landslide events include human deaths, injuries the loss of 

cultural heritage. It was shown that the highest risk areas were associated with regions in which 

forestry and agriculture were the primary economic activities.  

Figure 5. Landslide Risk Map. 

 

The areas affected (or damaged) by landslides (affected area map) were determined after each 

landslide event. The Affected area map was prepared using the SPOT-5 satellite imagery and provides 

aerial information about damaged property. Landslide damages can be particularly costly to local 

governments that need to repair damaged public roads and drainage facilities. In addition, the affected 

area map can help to determine the liability of local governments for landslide damages. Finally, the 

emergency management maps provide information for emergency preparedness, planning mitigation 

and response. The emergency management maps are generated by overlying the landslide risk map 

with emergency assets and resources such as evacuation centers, hospitals, and transportation 

networks. Emergency management maps can help to improve the coordination of actions among all 

players involved in landslide response: first responders, government decision-makers and citizens.  

The Command and Control System (CCS) facilitates disaster management, emergency operation 

and landslide administration based on output products from the landslide disaster models. In Table 3 

and Figure 6 the CCS components and functionalities are shown. The developed system is being used 



Remote Sensing 2010, 2                  

          

2269 

by emergency management professionals and first response organizations in all four phases of 

emergency management: mitigation, preparedness, response and recovery. Managers can access the 

system through the internet with a computer, Personal Digital Assistant (PDA) or mobile phone. 

Finally, report and record management involves reviewing, verifying, updating and managing all of the 

elements in Situational Report in order to improve situational awareness and better understand the 

impacts of the landslide disaster. Screen shots from the landslide management system are provided in 

Figure 7. This figure highlights the GIS interface, the CRS, the CCS and the Web Portal. 

Table 3. Command & Control System Components and Functionalities. 

Command & Control 

System Components 

Functionalities;  

Provide Tasks or Information About: 

Alert Messages Disaster Event, Danger And Warning Notification (SMS, Email, Portal)  

Disaster Reports Landslide Situational Awareness, Damage, Victim, Evacuation Information 

Human Resources Contact Person, Officers on Duty, Role & Responsibilities, Task Assigned, 

Directive & Feedback, Designation, etc.  

Inventory Availabilities, Request, Approval, Receive, Utilization, Allocation, Return, etc. 

Support Center Disaster Capacity, Location, Distribution, Type (Evacuation, Operation And Relief) 

Figure 6. Configuration of the CCS and the communication disaster protocols. 
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Figure 7. Key system functionalities include: (a) landslide disaster analysis in GIS, (b) Landslide 

disaster products in the Central Repository System (CRS) (c) Command and Control and (d) 

Web portal. 

 

4. Conclusions 

In order to build a more landslide resistant and resilient society, an original GIS-based decision 

support system is developed in order to help emergency managers better prepare for and respond to 

landslide disasters. The GIS-based landslide monitoring and management system includes a Central 

Repository System (CRS), Disaster Data Processing Modules (DDPM), a Command and Control 

System (CCS) and a Portal Management System (PMS). This architecture provides valuable insights 

into landslide early warning, landslide risk and vulnerability analyses, and critical infrastructure 

damage assessments. Finally, internet-based communications are used to support landslide disaster 

modeling, monitoring and management. This GIS-based landslide disaster system has been applied to 

the Penang Island landslide case study. The system has proven effective in delivering critical 

information pertaining to landslide situational awareness including landslide early warning. The 

developed decision support system can also assist with real-time landslide detection and monitoring, as 

well as disaster mitigation and preparedness. The system has been extensively tested to rigorously 

determine risk in areas affected by active landslides.  

It was shown that emergency messages could be expeditiously sent to all parties following a 

landslide event. The developed system allows emergency management decision makers to acquire 

(a) (b) 

(c) (d) 
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landslide hazard management information in real time, such as location of critical resources and assets 

(i.e., nearby operation centers, hospitals, schools area, settlements, and airports). In summary, the 

landslide system improves real-time communications and information sharing during a disaster and 

creates valuable landslide risk maps. These maps can assist with the implementation of technical 

landslide countermeasures as well as the development of non-structural mitigation measures 

(stabilization procedures), such disaster risk reduction education, zoning maps, and regulations 

pertaining to slope designs (e.g., slope grades). It is shown that our systems architecture and 

implementation can reduce the large-scale devastation caused by landslides including human injury 

and death, economic dislocation, environmental impacts, and the loss of cultural and natural heritage. 
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