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Abstract: Distinguishing sea ice and water is crucial for safe navigation and carrying out offshore
activities in ice zones. However, due to the complexity and dynamics of the ice–water boundary,
it is difficult for many deep learning-based segmentation algorithms to achieve accurate ice–water
segmentation in synthetic aperture radar (SAR) images. In this paper, we propose an ice–water
SAR segmentation network, E-MPSPNet, which can provide effective ice–water segmentation by
fusing semantic features and edge information. The E-MPSPNet introduces a multi-scale attention
mechanism to better fuse the ice–water semantic features and designs an edge supervision module
(ESM) to learn ice–water edge features. The ESM not only provides ice–water edge prediction but
also imposes constraints on the semantic feature extraction to better express the edge information.
We also design a loss function that focuses on both ice–water edges and semantic segmentations
of ice and water for overall network optimization. With the AI4Arctic/ASIP Sea Ice Dataset as the
benchmark, experimental results show our E-MPSPNet achieves the best performance compared
with other commonly used segmentation models, reaching 94.2% for accuracy, 93.0% for F-score,
and 89.2% for MIoU. Moreover, our E-MPSPNet shows a relatively smaller model size and faster
processing speed. The application of the E-MPSPNet for processing a SAR scene demonstrates its
potential for operational use in drawing near real-time navigation charts of sea ice.

Keywords: ice–water segmentation; edge prediction; multi-scale attention mechanism; semantic
features; ice concentration

1. Introduction

Sea ice is an important part of the Arctic cryosphere. In recent years, the constant rise
in Arctic temperatures has led to a record low in sea ice extent and a prolonged thin ice
period in the Arctic sea, providing opportunities for countries to use the Arctic shipping
routes and develop Arctic resources [1]. However, the thinning of sea ice results in more
dynamic ice cover and faster movement of the sea ice edge. In addition, the general retreat
of the Arctic sea ice cover is exposing glacier fronts to open water, resulting in the calving of
more icebergs. This will bring unpredictable risks to navigation. Near real-time information
on sea ice is useful for route planning of ships and icebreakers. Such applications are often
supported by sea ice charts or related reports published by national ice monitoring agencies
in many countries, such as the United States National Ice Center (USNIC), the Canadian Ice
Service, the Danish Meteorological Institute (DMI), etc. The ice charts depict ice condition
and distribution in the form of ice eggs based on the experience of sea ice analysts and
with reference to remote sensing data, which are time-consuming and labor-intensive.
For ship route planning in ice zones, it becomes particularly important to design a fully
automated method to achieve automatic segmentation between sea ice and open water
based on remote sensing images.

Synthetic Aperture Radar (SAR) has the capability of all-weather continuous obser-
vation and high temporal and spatial resolution. In recent years, research based on SAR
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images has been widely conducted for automatic object registration, change detection,
and measurement [2–4]. Cross-polarization SAR images acquired in wide swath modes
show many advantages in sea ice detection. Studies have shown that cross-polarization
(horizontal-vertical (HV) and vertical-horizontal (VH)) is helpful in distinguishing between
rough thin ice and open water [5,6], is insensitive to changes in sea surface roughness
caused by incident angle and wind [7], and sea ice and open water have greater con-
trast in backscatter. Therefore, many sea ice studies tend to use dual polarization or full
polarization data.

Early studies on sea ice segmentation in SAR images rely on texture features [8], which
can be generated by algorithms such as the Gray-level Co-occurrence Matrix, Markov
Random Fields, and Discrete Wavelet [9–12]. Combining texture features with machine
learning algorithms such as Support Vector Machine (SVM) has presented excellent perfor-
mance in sea ice segmentation [13,14] and has been successfully applied in an automatic
sea ice segmentation system [15]. Decision tree and random forest have been used to
map fast ice over the Antarctic area with good results [16]. Subsequently, artificial neural
networks (NNs) are also frequently used [17,18]. Both SVM and NNs focus on the input
of a large number of features to enhance texture information. These features are easily
affected by noise, and the algorithm parameter adjustment process requires too much manual
intervention and is affected by data and region. Thus, traditional segmentation methods work
well on specific problems but have poor sea ice analytical ability in complex situations.

Typical image segmentation only segments pixels that have similar properties into
regions, and the class of each region needs to be further processed. However, the region-
based segmentation methods are not accurate enough to meet the needs of automated sea
ice operations [19]. In contrast, semantic segmentation provides further understanding of
the image, directly assigning a semantic label to each pixel in the segments. Segmentation
methods based on deep learning still require a large amount of data support. A few public
SAR image datasets have been developed in the field of sea ice detection with deep learn-
ing [20–23]. Khaleghian et al. [24] proposed a dataset containing six classes of ice types and
ice edge analysis. Song et al. [25] established a dataset to facilitate sea–ice classification with
spatial and temporal information. However, due to the process of making sea–ice semantic
segmentation datasets being complicated and time consuming, only the AI4Arctic/ASIP
Sea Ice Dataset [26] is applied to scene segmentation. In ice–water segmentation in this
paper, the semantics mainly refer to sea ice and open water. Convolutional neural networks
(CNN) have become a mature method for solving semantic segmentation, because they are
less sensitive to pixel-level details and produce ice concentration that is less noisy and in
closer agreement with that from image analysis charts [27]. Despite growing interest in
deep learning techniques for sea ice segmentation, several recent studies on ice–water seg-
mentation [28,29] and ice type classification [30–33] using dual-polarized C-band SAR have
suggested a high difficulty in accurately predicting the ice types with low ice concentrations,
especially near the edges of sea ice and open water.

To address the problem of edge detail loss, researchers have considered training a
multi-task network or designing a special network module to obtain more accurate seman-
tic segmentation results. Chen et al. [34] proposed to optimize the segmentation results
obtained by a full convolutional network in detail through conditional random fields (CRF),
but this processing method only uses low-level features such as texture information to
correct the segmentation results. On this basis, they further proposed an edge-preserving
filtering method with domain transform instead of CRF to improve the accuracy of object
localization in semantic segmentation [35]. Takikawa et al. [36] constructed a semantic
segmentation model with parallel CNN that treats edge information as a separate process-
ing branch and processes the information in parallel with the segmentation branch, which
can produce clearer object boundaries. In summary, edge information can indeed help the
segmentation network to locate the objects precisely.

These common image processing methods are not completely applicable to remote
sensing images, because in the remote sensing images, the actual edges are always un-
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certain to some extent due to the sensor errors and atmospheric distortions. Most sea ice
images do not have strictly ideal edges, and their boundaries are not always lines in the
geometric sense, but transitions with a certain width, and the actual edges basically present
uncertainty and fuzziness. Uncertainty has caused slow processes and low accuracy in
edge detection tasks, and efforts have previously focused on how to reduce the uncertainty
of edge information in edge detection tasks, and in recent years fuzziness edges have
attracted the attention of experts [37,38].

In order to improve the accuracy of ice–water segmentation of SAR images, this paper
designs an ice–water scene segmentation network combining multi-scale semantic features
and edge supervision, with the assumption that the inherent correlation exists between
edge detection and semantic segmentation.

A concise summary of our contributions are as follows

1. We propose an ice–water scene segmentation network, E-MPSPNet. It fuses the
multi-scale features with scale-wise attention to produce an ice–water segmentation
feature map and combines the segmentation feature map with an edge feature map to
achieve better segmentation accuracy. The proposed E-MPSPNet performs well with
a relatively higher efficiency compared to mainstream segmentation networks, U-Net,
PSPNet, DeepLabV3, and HED-UNet.

2. To eliminate the uncertainty of ice–water segmentation edges, we design an edge
supervision module based on the idea of deep supervision. It plays a two-fold role:
directly predicting the ice–water edge feature map and providing additional edge
constraints to feature extraction. This module helps capture the edge characteristics
of ice and water more effectively.

3. We design a joint loss function that combines the edge loss and the semantic loss
for the network optimization and take into account the problem of class imbalance
between edge pixels and non-edge pixels.

This paper is organized as follows. Section 2 presents the secondary process of the
dataset. Section 3 presents the E-MPSPNet network architecture. Section 4 presents the
baseline experimental results of our method and other commonly used segmentation
models on the constructed dataset. Section 5 discusses the applications and limitations of
our model in coastal environments. Section 6 is the conclusion.

2. Study Area and Data
2.1. Data Source

In this study, we employed a public dataset AI4Arctic/ASIP Sea Ice Dataset—version
2 as the data source and re-produced training and testing datasets on the basis of it.

The AI4Arctic/ASIP Sea Ice Dataset has 461 views covering different waters around
Greenland from March 2018 to May 2019 at different sea and ice conditions in different
seasons. The spatial distribution of these views can be seen in Figure 1. Each file in network
Common Data Form (netCDF) format contains mainly dual-polarized (HH and HV) Extra
Wide swath mode (EW) SAR images and low-resolution AMSR2 microwave radiometer
data, as well as the corresponding sea ice charts. The SAR images were from two C-band
satellites, Sentinel-1 A and B, with a standard strip width of 400 km, a resolution of about
90 m, a pixel spacing of 40 m, and a range of incidence angle of 18.9◦~47.0◦. Additionally,
the file provides auxiliary information such as the distance between each pixel and the
land. We only used the dual-polarized SAR images and the corresponding sea ice charts
for ice–water segmentation.

The ice charts in the AI4Arctic/ASIP Sea Ice Dataset are from the ice chart archives
produced by DMI Greenland Ice Service. They are provided in the Sea Ice Georeferenced
Information and Data (SIGRID3) ice code (JCOMM Expert Team on Sea Ice 2014), follow-
ing the World Meteorological Organization (WMO) standard. Together with the dataset,
two noise correction schemes are provided, which are from the European Space Agency
(ESA) and the Nansen Environmental and Remote Sensing Center (NERSC), respectively.
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We chose to go through the NERSC noise correction scheme [39], because it is more effective
for HV polarized noise floor stripes removal [28].
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2.2. Dataset Processing

The characteristics and extent of the marginal area are very important for navigation
or exploration in or near ice areas. Although icebreakers are able to pass through low-
concentration ice areas, sea ice changes rapidly. In order to depict more accurate ice–
water edges in ice maps, it is beneficial to treat ice of different concentrations as “sea
ice” for safe navigation. So, we secondary processed the AI4Arctic/ASIP sea ice dataset
and created an ice–water segmentation dataset using SAR images and DMI ice maps as
auxiliary information.

The steps of processing ground truth labels for ice and water segmentation are as
follows and are demonstrated in Figure 2.

1. Identify polygons for ice–water segments. The AI4Arctic/ASIP Sea Ice Dataset con-
tains a DMI ice chart for the area corresponding to each SAR image. Each polygon in
the ice chart is recorded in a table with its unique ID and the code of ice concentration
in SIGRID3. To generate ice and water polygons for this study, we simplify the ice
concentration SIGRID3 codes into two categories, as shown in Table 1. Label “0”
defines pixels with ice concentrations less than 1/10 as sea water (according to the
WMO’s definition), and label “1” defines pixels with ice concentrations in the range
1–10/10 as sea ice.

2. Identify land masks. According to the distance information between pixels and the
land zones provided in the netCDF files, the pixels containing land are used as masks.
The parts of the SAR image outside the ice chart area are also considered as masks.
The pixels being masked are not used for the training of the model.

3. Generate ground truth labels. After completing the above two steps, the ground truth
maps for ice–water segmentation can be generated. Then, a Sobel operator is run on
the ice–water segmentation maps to produce ice–water boundaries. The produced
edge ground truth map has the value “zero” for the ice–water boundaries, and it will
be used for edge supervision in this paper.
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20180421T080346_S1B_AMSR2_IcechartGreenlandCentralEast.

Table 1. Simplified labeling scheme reducing DMI codes to two categories.

Definition,
Concentration

Sigrid3 Code
(CT, CA, CB, and CC) Category Label

Ice Free 00
Sea corresponds to the

concentration of codes < 1/10 0Less than 1/10 01
Bergy water 02 *

1/10 10

Ice corresponds to the
concentration of
codes 1–10/10

1

2/10 20
3/10 30
4/10 40
5/10 50
6/10 60
7/10 70
8/10 80
9/10 90

9+/10 (95%) 91 **
10/10 92

* The category “Bergy water” is used for open sea (water category) in the DMI ice charts. The category “Ice Free”
is not used in the DMI ice charts, since icebergs can appear everywhere in Greenland waters. ** The category
“9+/10” is used in the DMI ice charts for sea ice that is fully compacted, but not fast ice (100% ice).

Since each SAR image is too large to be directly fed into the network for training
and too much detail information will be lost if it is downscaled, this paper crops the SAR
image into patches of 800 × 800 pixels with a non-overlapping sliding window. The set
of sub-regions is filtered to exclude the sub-regions containing mask pixels. To increase
the generalization ability and robustness of the network model, the diversity of the dataset
can be increased by data augmentation. We expand the data by simultaneously flipping
horizontally, flipping vertically, and mirroring diagonally for each SAR image and its corre-
sponding label image. The dataset created per the methodology in this section generated
8244 samples, which were then normalized and divided into three parts according to 7:2:1
for the training set, test set, and validation set.
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3. Methodology
3.1. Overview of the Network Structure

This paper builds an ice and water segmentation network, E-MPSPNet, that integrates
the sea ice edge information and semantic features, and the overall structure of the network
is shown in Figure 3. E-MPSPNet consists of a backbone network, a multi-scale feature
fusion module (MFFM) and an edge supervision module (ESM). The backbone network
is mainly used to obtain shallow and deep semantic feature maps for subsequent feature
fusion. The MFFM introduces a multi-scale attention mechanism to fuse the features at dif-
ferent levels of details to semantic segmentation feature maps, making better use of global
and local information. The ESM imposes supervision on each of the feature extraction layers
in the backbone network by backpropagating edge prediction errors. Meanwhile, it gener-
ates predicted edge feature maps. Finally, the fused semantic segmentation features and
the predicted edge feature maps are combined to improve the network segmentation effect.
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3.2. Backbone Network

The E-MPSPNet backbone network is based on PSPNet [40] with different structure
parameters in order to adapt to our SAR image setting. In the backbone, ResNet50 [41] is
adopted as a feature extractor. The extracted features are processed through a pyramid
parsing module (PPM), which consists of different sizes of pooling kernels to output
different scales of feature maps.

The feature extractor is composed of five residual blocks (RESblocks), whose network
structure is shown in Table 2. The feature extractor reduces the resolution of the input
image (800 × 800) to 1/2, 1/4, and 1/8 via three-time pooling. Together with the input
image, the feature maps output by the five RESblocks provide six side-layer inputs for the
ESM module.
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Table 2. Convolutional layer structure of the backbone network.

Layer Type Kernel Size Channels Stride Output Size

input 3 × 3 64 1 800 × 800 × 64
conv1 7 × 7 128 2 400 × 400 × 128

conv2
Max pooling 128 2 200 × 200 × 1281 × 1
3 × 3
1 × 1

× 3
256 1 200 × 200 × 256

conv3
1 × 1

3 × 3
1 × 1

× 4
512 1 100 × 100 × 512

conv4
1 × 1

3 × 3
1 × 1

× 6
1024 1 100 × 100 × 1024

conv5
1 × 1

3 × 3
1 × 1

× 3
2048 1 100 × 100 × 2048

3.3. Edge Supervision Module

The ESM is constructed based on depth supervision [42]. It has two objectives: The
first is to directly provide edge prediction information for ice–water segmentation. The sec-
ond is to provide additional constraints to each feature extraction layer of the backbone
network so that the extracted features can capture the edge characteristics of ice and water
more effectively.

We denote our input training data set by S = {(xi, yi), i = 1 · · ·N}, where xi ∈ Rh×w×c

denotes the input image, in which h, w are the length and width of the feature map,
respectively, and c = 2 indicates the channels of HH and HV polarizations and yi ∈ Rh×w

denotes the corresponding ground truth binary edge map for image xi. We consider each
sample from a holistic perspective, so the subscript i is dropped for notational simplicity.

x leads to M side output layers from the feature extraction module of the backbone
network, and for each layer m = 1 . . . M, there is:

F(m) = f
(

W(m) × F(m−1)
)

, F(0) ≡ x (1)

where W(m) denotes the weight of the feature extraction layer, and F(m−1) denotes the
feature map extracted by the m− 1 layer.

In ESM, each side output layer is connected to a 1 × 1 convolution layer, whose
corresponding weight is defined as w =

(
w1 · · ·wM). These side layers produce ice–water

edge prediction results by supervised learning with the edge ground truth label (scaled
by 1/2, 1/4, and 1/8 scales correspondingly) and exert external constraints on the feature
extraction intermediate layers in the backbone network via error backpropagation, which
enhances the expression of the ice–water edge in the feature maps. Meanwhile, the feature
maps output from all the side layers are upsampled to the original image size and stacked,
and then the edge prediction map E1 is generated by 1× 1 convolution.

The objective function of the whole ESM module consists of two parts, denoted as:

J(W) = Jside(W) + Jout(W) (2)

Jside(W) = ∑M
m=1 αm

[
‖ w(m) ‖

2
+ `side

(
W, w(m)

)]
(3)

Jout(W) = ‖ w(out) ‖
2
+ ` f use

(
W, w(out)

)
(4)

where w(out) denotes the weight of the output layer of the edge prediction map E1,
` f use

(
W, w(out)

)
denotes the loss function of multilayer fusion, and `side

(
W, w(m)

)
de-
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notes the pixel-level loss function of the image output from the side layer. The specific
definition of the loss function is given in Section 3.5.

3.4. Multi-Scale Feature Fusion Module

When distinguishing the boundary between ice and water, the model is expected to
obtain a more accurate description of the ice segmentation line by learning from a high-
resolution image. Learning lower-resolution-level image information farther away from
the boundary can provide a more comprehensive evaluation of the scene, leading to better
segmentation in these regions. Therefore, in this paper, attention weight is assigned to the
multi-scale feature images to fully emphasize the details of the ice and water classes at
different scales. Then, simple summation processing is used to integrate the multi-scale
feature images for ice–water segmentation prediction.

The upsampled multi-scale pooling feature from the backbone network is denoted as
P =

{
p′j
}

, p′j ∈ Rh×w×c, and j = 1 . . . 5 represents the serial number of different pooling
feature maps. The MFFM module first performs a channel downscaling operation r(·) on
each feature map, which is implemented by a 1× 1 convolution operation. The reduced
dimensional feature is denoted as pj = r

(
p′j
)
∈ Rh×w×2. Then, softmax function is applied

to the feature map pj to transform it into an attention weight matrix, and the dot product of
the feature map pj and the attention weight matrix are calculated. Finally, semantic feature
S1 is obtained by summing the multiple feature maps. The process is formulated as follows:

hj = pj � so f tmax
(

pj

)
(5)

S1 = ∑
j

hj (6)

In the end, the E-PSPNet network fuses the semantic features S1 and the edge fea-
tures E1 by stacking and 1× 1 convolution and outputs the final ice–water segmentation
prediction result by pixel-level classification with the sigmoid function.

3.5. The Joint Loss Function

The loss function is defined as the joint loss L of the MFFM and ESM, and the expres-
sion is:

L = lseg + ledg (7)

where lseg represents the semantic loss, the loss value predicted by MFFM, and ledg is the
loss value predicted by EEM.

The semantic loss lseg is calculated by mixing a focal loss [43] and a MIOU loss function,
which is defined as:

lseg = lFocal + lMIOU (8)

In the sea ice segmentation task, it is difficult to distinguish low-concentration ice
from water, and the features of “edge” and “non-edge” are highly unbalanced. Focal loss
reduces the weight of the easy sample (i.e., water), so that the model can focus more on a
difficult sample (i.e., ice) during training. The expression lFocal is in (9), where γ = 2 and
(i, j) are the coordinates of an image position, (i, j)ε(W, H); W, H are the width and height
of the image, respectively; ŷi,j is the pixel value at the prediction map (i, j), ŷi,jε(0, 1); and
yi,j is the pixel value at label map (i, j), yi,jε{0, 1}.

lFocal = −∑i,j

(
yi,j
(
1− ŷi,j

)γ log
(
ŷi,j
)
+
(
1− yi,j

)(
ŷi,j
)γ log

(
1− ŷi,j

))
(9)

The MIOU loss supervises the network learning by measuring the mean intersection
over union between the predicted segmentation and the ground truth for multiple classes.
In the SAR image, the proportion of sea ice and sea water is often unbalanced. The MIOU
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loss function can give equal treatment to ice and water, and thus effectively improve the
training difficulties caused by the class imbalance.

The loss function of MIOU is defined as:

lMIOU = 1−∑
i,j

yi,jŷi,j

yi,j + ŷi,j − yi,jŷi,j
(10)

The loss for the EEM module, ledg, is defined as the average loss of the six side outputs
and the final edge prediction loss, as shown in (11)

ledg =
1

M− 1 ∑M−1
M=1 `side

M−1+` f use (11)

where M = 6 is the total number of output layers. Both `side and ` f use are in the form of
focal loss, as (9). The focal loss has a modulating factor

(
1− ŷi,j

)γ. For easily classified
samples, the factor tends to 0, which has little influence on the weight of the loss function;
but, for hard samples, the weight in the loss function increases, allowing the network to
focus on “ambiguous” samples at the edge of the sea ice. Thus, the ledg based on focal loss
is not only suitable for extracting uncertain edge features of sea ice, but also improves the
generalization ability of the model and helps the network training to focus more on the
optimization of the edges.

4. Experiment and Analysis
4.1. Experimental Environment and Settings

The experiments in this paper were all performed on a GeForce RTX 2080 Ti GPU.
The PyTorch deep learning framework was used to implement the algorithm and the Adam
optimizer [44] was used, with an initial learning rate set to 1 × 10−2 and an exponential
learning rate decay of 0.9 applied after each epoch.

4.2. Evaluation Indicators

Accuracy of pixel-level ice–water classification is used for evaluating the overall per-
formance of the models. At the same time, in order to avoid the limitation of accuracy in
class-imbalanced classification, this paper also uses F-score and mean intersection over
union (MIoU) as the evaluation indicators for pixel-level semantic segmentation. All these
metrics can be obtained from the confusion matrix using the following four statistical
measures: True Positives (TP), False Positives (FP), True Negatives (TN), and False Nega-
tives (FN).

Accuracy is denoted as the proportion of correctly predicted pixels to the total number
of pixels:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

F-score is calculated by the harmonic mean of recall and precision, as in (13)–(15).
The precision and recall can indicate the correctness and completeness of the segmented
regions, respectively.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F− Score = 2× precision× recall
precision + recall

(15)
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MIoU is a commonly used metric in remote sensing image segmentation, as in (16),
and Nclass = 2 indicates the ice and water. It measures the average of the overlapping ratio
between the ground truth and the prediction over all classes.

MIoU =
1

Nclass
∑Nclass

i=1
TP(i)

TP(i) + FP(i) + FN(i)
(16)

All the three evaluation indicators are between 0 and 1 in value, and the higher the
value, the more accurate the segmentation result.

4.3. Edge Supervision Module
4.3.1. Comparison with Different Segmentation Models

For comparative analysis, we chose four deep learning segmentation models: U-
Net, PSPNet, DeepLabV3, and HED-UNet [23]. The U-Net, PSPNet, and DeepLabV3 are
well-known segmentation models, which have also been used for remote sensing image
segmentation [45–47]. In particular, our model uses the PSPNet as the backbone network.
Thus, it is reasonable to compare with it. The HED-UNet combines semantic segmentation
and edge detection and was applied for Antarctic coastline detection. Our model has a
similar idea to HED-UNet.

We evaluate these models’ performance from both quantitative and qualitative aspects.
Quantitative analysis is based on accuracy, F-score, and MIoU, and qualitative analysis is
based on the observation of the segmentation effect in the predicted maps.

As shown in Table 3, the ice and water segmentation network designed in this paper
has better performance on the test set than U-Net, PSPNet, DeepLabV3, and HED-UNet.
The U-Net model fuses the deep and shallow ice–water feature maps and performs upsam-
pling to solve the loss of feature information caused by the deepening of the network, but
the prediction results are still misclassified and incomplete, and the prediction accuracy has
room for improvement. DeepLabV3 expands the receptive field through expansive convo-
lution to obtain more context information, and its performance is significantly better than
U-Net in terms of indicators. PSPNet further improves network performance by effectively
extracting multi-scale features through its pyramid pooling module. HED-UNet is built
on U-Net, with a 4.8% higher MIoU, 2.9% higher F-score, and 2.9% higher accuracy than
U-Net. This proves that the addition of edge information can improve the segmentation
accuracy of the semantic segmentation task.

Table 3. Comparison results of different model segmentation.

Methodology Accuracy F-Score MIoU

UNet 0.903 0.881 0.822
DeepLabV3 0.928 0.919 0.864
HED-UNet 0.932 0.910 0.870

PSPNet 0.932 0.921 0.873
E-MPSPNet 0.942 0.930 0.892

Our E-MPSPNet reaches the highest for all the evaluation metrics: accuracy of 0.942,
F-score of 0.930, and MIoU of 0.892. Compared with the better-performed PSPNet network,
the design of the edge supervision module and multi-scale feature fusion module in E-
MPSPNet can prompt the network to pay more attention to edge details during the training
process, so as to obtain better segmentation performance.

Qualitatively, Figures 4 and 5 demonstrate the segmentation results of different models
for two sub-regions of SAR images selected from the test set. Figure 4b shows the ground
truth segmentation maps for the two SAR images, where dark blue is sea water and
light blue is sea ice. The predicted segmentation map by each model is overlaid with
a transparent ratio of 0.7 on the original sub-region SAR image, in order to show the
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segmentation effect visually. The rest of the demonstration figures in this paper apply the
same overlaying method.
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the prediction result of U-Net, (d) the prediction result of DeepLabV3, (e) the original SAR image 
(HV), (f) the prediction result of PSPNet, (g) the prediction result of HED-UNet, (h) the prediction 
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Figure 5a depicts sea ice with no clear boundary and open water within the sea ice. 
The U-Net segmentation result (Figure 5c) reveals obvious mis-segmentations and uneven 
sea ice contours, as well as a severe lack of edge information. The result of DeepLabV3 
(Figure 5d) has a much better segmentation effect, but the edges are not smooth enough. 
The prediction results of PSPNet and HED-UNet in Figure 5f,g have fewer mis-segmented 
sea ice pixels, but like the previous two models, there is no effective distinction between 
ice and water in the lower left corner of the region, resulting in an incomplete presentation 
of the sea ice contours. This indicates that HED-UNet does not have a good segmentation 
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tation regions of ice and water. Although there is a certain deviation from the ground true 
map (Figure 5b), the edge details are better grasped. 

Figure 4. Example 1 of the segmentation results of a sub-region SAR image, the edge area of ice
water is mostly low concentration sea ice with open water gaps. (a) The original SAR image (HH),
(b) the ground truth of semantic segmentation (dark blue is sea water and light blue is sea ice), (c) the
prediction result of U-Net, (d) the prediction result of DeepLabV3, (e) the original SAR image (HV),
(f) the prediction result of PSPNet, (g) the prediction result of HED-UNet, (h) the prediction result of
E-MPSPNet.
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Figure 5. Example 2 of the segmentation results of a sub-region SAR image with open water inside
the sea ice. (a) The original SAR image (HH), (b) the ground truth of semantic segmentation (dark
blue is sea water and light blue is sea ice), (c) the prediction result of U-Net, (d) the prediction result
of DeepLabV3, (e) the original SAR image (HV), (f) the prediction result of PSPNet, (g) the prediction
result of HED-UNet, (h) the prediction result of E-MPSPNet.

In the SAR image (HH) shown in Figure 4a, the SAR image (HV) shown in Figure 4e,
the edge area of ice and water is mostly low concentration sea ice with open water gaps.
As seen in Figure 4c, U-Net can only vaguely predict the extent of sea ice, and the part of
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sea ice at the edge is incorrectly classified as seawater. According to the prediction results of
DeepLabV3 and PSPNet in Figure 4d,f, respectively, although a relatively complete region
can be segmented, it is easy to incorrectly classify open-water pixels as sea ice pixels, which
is not conducive to subsequent edge localization. The misclassification effect of HED-UNet
(Figure 4g) at the edge of sea ice has been improved to some extent, but there are still a
lot of inaccurate classifications at the edge. In comparison, the detection effect of sea ice
by E-MPSPNet (Figure 4h) is closer to the true value, and the edge information can be
retained better.

Figure 5a depicts sea ice with no clear boundary and open water within the sea
ice. The U-Net segmentation result (Figure 5c) reveals obvious mis-segmentations and
uneven sea ice contours, as well as a severe lack of edge information. The result of
DeepLabV3 (Figure 5d) has a much better segmentation effect, but the edges are not smooth
enough. The prediction results of PSPNet and HED-UNet in Figure 5f,g have fewer mis-
segmented sea ice pixels, but like the previous two models, there is no effective distinction
between ice and water in the lower left corner of the region, resulting in an incomplete
presentation of the sea ice contours. This indicates that HED-UNet does not have a good
segmentation effect on sea ice images with complex edges. E-MPSPNet (Figure 5h) shows
clear segmentation regions of ice and water. Although there is a certain deviation from the
ground true map (Figure 5b), the edge details are better grasped.

Our network mainly targets the edges between ice and water. Because the number
of edge pixels is much smaller than the number of total image pixels, the advantage of
E-MPSPNet over other models is small based on the evaluation metrics. However, in
observing the segmentation effect of the prediction results, it can be seen that our proposed
method has obvious improvements at the ice and water boundaries as well as for the
overall segmentation of complex ice–water scenes. It needs to be noted that E-MPSPNet
has a rough segmentation problem in the transition regions between open water and low-
concentration of sea ice for the scene like Figure 5. More discussion about this problem is
introduced in Section 5.3.

4.3.2. Influence of MFFM and EEM on Network Segmentation Performance

In order to verify the effectiveness of the MFFM and ESM in E-MPSPNet, three
structures, backbone network, backbone and MFFM, and backbone and MFFM and ESM
are compared based on the test set. It can be seen from Table 4 that the addition of MFFM
and ESM has improved all the evaluation indicators compared with the backbone network.
Specially, the MFFM module increases MIoU by 0.7% and F-score by 0.4%. This shows
that MFFM can improve the expression of semantic features of sea ice and water by fusing
multi-scale features with attention mechanisms. The ESM module increases MIoU by 1%
and F-score by 0.7%, bringing more improvement than the MFFM. This proves that edge
features added to the segmentation network can generate positive feedback and can solve
the problem of the loss of sea ice edge details.

Table 4. The effects of MFFM and ESM on segmentation performance.

Network Structure Accuracy F-Score MIoU

Backbone network 0.934 0.919 0.875
Backbone + MFFM 0.936 0.923 0.882

Backbone + MFFM + ESM 0.942 0.930 0.892

The results of the subjective evaluation are shown in Figures 6 and 7. Figure 6a depicts
a sea ice area with a clear ice–water boundary. When the prediction results are compared,
it is discovered that the backbone network (Figure 6c) is better for segmenting large areas
of sea ice and water but loses a significant amount of edge details. The same problem
of inadequate and incomplete segmentation exists after adding MFFM (Figure 6e), but
the effect is improved because effective multi-scale contextual information is extracted
after adding the multi-scale attention mechanism, so that the mis-segmentation is greatly
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reduced. The addition of the ESM module (Figure 6f) alleviates the problems of incorrect
and missed segmentation, and the edge contour can be better preserved.
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the prediction results, the segmentation in the backbone network (Figure 7c) performs the 
worst, misclassifying the low-concentration sea ice as water, and the reason for the unsat-
isfactory segmentation boundary could be a lack of dependency information among pix-
els. The addition of the MFFM module (Figure 7e) to the backbone network improves the 
edge segmentation effect by obtaining more contextual information. The backbone and 
MFFM and ESM structure (Figure 7f) has further improved the edge details, yielding a 
segmentation result that is closer to the ground truth compared with other results. In sum-
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Figure 6. Segmentation results for an example sub-region SAR image with a clear ice–water bound-
ary. (a) The original SAR image (HH), (b) the ground truth semantic segmentation map, (c) the
prediction result of the backbone network, (d) the original SAR image (HV), (e) the prediction result
of the backbone and MFFM structure, and (f) the prediction result of the backbone and MFFM and
ESM structure.
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Figure 7. Segmentation results for an example sub-region SAR image with low-concentration sea ice
filled at the edges. (a) The original SAR image (HH), (b) the ground truth semantic segmentation
map, (c) the prediction result of the backbone network, (d) the original SAR image (HV), (e) the
prediction result of the backbone and MFFM structure, and (f) the prediction result of the backbone
and MFFM and ESM structure.

In Figure 7a, low-concentration sea ice is filled at the edges, and similar texture
characteristics are observed between low-concentration sea ice and open water. According
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to the prediction results, the segmentation in the backbone network (Figure 7c) performs
the worst, misclassifying the low-concentration sea ice as water, and the reason for the
unsatisfactory segmentation boundary could be a lack of dependency information among
pixels. The addition of the MFFM module (Figure 7e) to the backbone network improves
the edge segmentation effect by obtaining more contextual information. The backbone and
MFFM and ESM structure (Figure 7f) has further improved the edge details, yielding
a segmentation result that is closer to the ground truth compared with other results.
In summary, MFFM provides more effective global information for the model, and the
shallow feature maps in ESM can supplement the missing edge information, showing good
segmentation performance for the case of low-concentration sea ice edges.

4.3.3. Influence of Different Loss Functions on Network Segmentation Performance

For a deep learning model, the neural network weights in the model are trained
through loss backpropagation, so the loss function determines the training effect of the
deep learning model. In order to verify the effectiveness of the loss function designed in this
paper, ablation experiments were performed on the loss function of E-MPSPNet. To simplify
the comparison, the joint loss function is defined as l1 = lFocal , l2 = lFocal + lMIOU , l3 =
lFocal + lMIOU + ledg, where l1 and l2 are the loss functions for the semantic segmentation
task and l3 is the loss function after adding edge features. The segmentation performance
with different loss functions is shown in Table 5.

Table 5. Results of the effect of different loss on network segmentation performance.

Methodology Accuracy F-Score MIoU

l1 0.928 0.915 0.866
l2 0.936 0.924 0.879
l3 0.942 0.930 0.892

As can be seen from Table 5, using only focal loss can achieve relatively good perfor-
mance. Comparing l2 to l1, it can be concluded that the MIoU loss function can greatly
lift the segmentation performance, which makes the model focus more on difficult and
easily misclassified samples during training, and eliminates the problems caused by the
unbalanced categories of samples. Compared with l1, accuracy, F-score, and MIoU using
l3 loss increased by 1.4%, 1.5%, and 2.6%, respectively. The ablation experiments show
that predicting uncertain edges can help to improve the overall segmentation effect of the
network, and the joint loss function designed in this paper has obvious advantages to make
up for the shortage of segmentation results of single loss models, which can reduce the gap
between the model prediction results and the true values and improve the model ability of
detail detection.

5. Discussion
5.1. The Application of Ice–Water Segmentation in a SAR Scene

A fully automated sea ice segmentation system can not only provide a near real-time
service for sea ice mapping, but also minimizes the impact of human bias when compared
to manual ice map drawing by different analysts. Thus, it is required to test the performance
of an ice–water segmentation algorithm in practice.

To demonstrate the utility of our proposed model in automated ice–water segmenta-
tion applications, we applied the trained E-MPSPNet to the ice–water scene segmentation
for the whole SAR image. The process includes three steps: (1) cropping the entire SAR
image into sub-regions with a sliding window of 800 × 800 pixels; (2) performing seg-
mentation for each sub-region of the SAR image by the E-MPSPNet; (3) reassembling
the segmentation outputs of these sub-regions in their original order to form a complete
segmentation map.

We took the SAR image from the Greenland Sea on 22 December 2021 (Figure 8)
as an example, which contained data that had not been used to train the E-MPSPNet
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network. Figure 8a shows the USNIC ice chart corresponding to the selected SAR image,
and Figure 8b shows the segmentation result overlaid on the original SAR image. It can
be seen that the overall edge between sea ice and open water is quite close to the true ice
chart, showing the good generalization capability of our model. There is a small line of
mis-segmentation in the middle of open water, which is often caused by the swath band
effect of SAR imagery. This kind of mis-segmentation can be eliminated by simple filtering.
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Figure 8. Applying E-MPSPNet for ice–water segmentation of the SAR image. (a) The SAR image
located around the Greenland east coast on December 22, 2021. (b) USNIC ice chart, where blue
represents the ice concentration < 1/10 Open Water, green represents the ice concentration 1–3/10
Very Open Drift Ice, yellow represents the ice concentration 4–6/10 Open Drift Ice, and orange
represents the ice concentration 7–8/10 Close Drift Ice, (c) the predicted segmentation overlapped on
the SAR image, where dark blue is sea water and light blue is sea ice.

Moreover, we test the efficiency of our model for the above example. Figure 9 illustrates
a scatter diagram of parameter sizes versus processing times for different models. Without
any parallel optimization, the time spent to completely process a SAR image of 10,000
× 10,000 pixels is only 38 s on a single GeForce RTX 2080 Ti GPU, which indicates the
effectiveness of the proposed model. Additionally, the parameter sizes for various models
are examined. E-MPSPNet with a parameter size of 116.28 MB is smaller than other models
except UNet. Although UNet has fewer parameters, its accuracy performance is poorer
than our model. In real applications, limited by the memory space of a fully automated sea
ice segmentation system, it is critical to design a model with a small number of parameters
while ensuring high performance. In conclusion, the E-MPSPNet model provides technical
support for drawing a navigation map that accurately distinguishes ice and water, and it
has a broad prospect for designing an automatic segmentation system for timely analysis
of SAR images using E-MPSPNet.
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5.2. The Impact of the Incident Angle

Sea ice conditions are complex and it is still a challenge to determine a common
threshold for ice and water segmentation using only dual-polarization radar intensity.
The correlation between image backscatter and incidence angle has been studied for the
ocean and sea ice in the past [48,49]; in the observation of satellite-based radar data, the
incidence angle is an important factor affecting the scattering characteristics of the features,
and there is a direct relationship between the backscattering intensity of SAR images and
the incidence angle. Thus, this paper also investigates the effect of incidence angle on the
segmentation performance of the model.

We experimented with two ways of introducing the incident angle information into the
ice–water segmentation model. Firstly, the incident angle information of Sentinel-1 images
provided in the ASIP dataset was used as the third channel of our model input, together
with the channels of HH and HV polarization, to train the E-MPSPNet. The experimental
results were not satisfactory, and all evaluation indicators decreased after adding the
third channel. Considering that the incident angle has the same value on each column in
the image numerical matrix, the performance drop might be because highly redundant
information affects the model’s feature learning. In the second experiment, the incident
angle information was used as a separate feature vector and fused with other extracted
features in the MFFM module, and the experimental results show that the segmentation
effect does not bring much improvement.

We conclude that the proposed network in this paper is insensitive to the effect of
incidence angle. However, to determine whether the incidence angle information of SAR
images can provide useful information in the research of ice and water segmentation, we
need to investigate more types of SAR images.

5.3. The Impact of Characteristics of Ice–Water Boundaries

As shown in Section 4.3, the problem of inaccurate partitioning is mainly in the
transition region between open water and low-concentration sea ice. To further discuss the
impact of the characteristics of ice–water boundaries on the segmentation, we illustrate four
typical scenarios of different ice–water boundaries in Figure 10 (overlapping the ground
truth segmentation on the original SAR image (HH)). High-concentration sea ice tends
to have clear boundaries (Figure 10a), while brash ice leads to complex ice–water mixing
boundaries (Figure 10b), ice and water intersecting with each other has unclear boundaries
(Figure 10c), and grease ice gives transitional boundaries (Figure 10d). Figure 11a–d show
the predicted results by our E-MPSPNet corresponding to the figures of Figure 10a–d.
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Figure 11. The predicted segmentation results. (a) The result corresponding to Figure 10a, (b) the
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Although our model is effective in edge detail detection and outperforms other mod-
els in all evaluation indicators, there are still imperfections to match the ground truth
(comparison between Figures 10 and 11).

We consider that part of the reason for the mismatch is the limitation of ice chart
production. For high-dynamic sea ice regions, ice chart information has limited value
due to the time delay from the acquisition of satellite data to the production of the chart.
Furthermore, C-band SAR satellites have difficulty to capture very thin ice, so the true
ice–water boundary in this study may actually be limited by the threshold at which sensors
recognize ice. In addition, for navigation safety, DMI ice chart analysts sometimes expand
the coverage of ice to generate ice charts, but actual sea ice conditions are unlikely to have
smooth boundary lines, as demonstrated in Figure 10d.

6. Conclusions

In this paper, after investigating the development of sea ice research based on SAR
images from the perspective of realizing accurate and automatic segmentation of ice and
water, we propose an ice–water SAR segmentation network, E-MPSPNet, to enable high
precision in ice edges that are hard to segment.

The proposed E-MPSPNet is based on the improved PSPNet framework, followed by
a multi-scale attention mechanism to add weights to the different scales of semantic feature
maps collected by the spatial pyramid pooling module, which can enhance the attention
to the most relevant dimensions of the current pixel and improve the segmentation effect.
Meanwhile, the edge supervision module is constructed by introducing lateral output
layers on the residual blocks of the PSPNet backbone network for edge prediction. It
facilitates edge expression on the semantic feature maps and combines the edge features
from shallow to deep layers to achieve multi-scale edge map prediction. Finally, the edge
map and the semantic segmentation map are fused by a convolution operation to extract
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rich feature details of the image, providing more accurate results for the ice–water semantic
segmentation task. The E-MPSPNet is trained with a joint loss function that minimizes
both the semantic segmentation loss and edge loss. Experiments were conducted on a
public AI4Arctic/ASIP sea ice dataset that has been modified for ice–water segmentation.
The proposed model in this paper achieves an accuracy of 0.942, F-score of 0.930, and MIoU
of 0.892. Compared with U-Net, PSPNet, DeepLabV3, and HED-UNet, our model has
better performance when segmenting open water and low-concentration sea ice. Results
of ablation experiments have shown the modules of multi-scale feature fusion and edge
supervision play important roles in distinguishing sea ice and water and drawing clear
boundaries between them. The applicability of E-MPSPNet has been verified on a SAR
scene segmentation, achieving a good match with the USNIC ice chart in a relatively
quick process. We have also discussed the potential impacts of the incident angle of SAR
imagery and the segmentation performance of our model on ice–water boundaries with
different characteristics.

Some limitations of this work should be mentioned. The effect of segmentation is
restricted by the ice charts, given that the evaluation is based on the available ice charts, and
the model performance may also vary from the dataset. At present, weak supervision and
semi-supervised learning semantic segmentation algorithms can reduce the dependence of
algorithm models on finely labeled data and the cost of labeling. Our further work will
consider establishing a dataset with more detailed edge mapping and examine our model’s
performance with other SAR images, such as those from RADARSAT satellites. We will
also try to migrate semi-supervised algorithms to sea ice segmentation to improve the
real-time performance of automatic sea ice segmentation.
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